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Exploring the distribution of conditional
quantiles estimation ranges: an application
to specific costs of pig production in the
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This paper uses symbolic data analysis tools to visualize conditional quantile estimation
intervals, applying it to the problem of cost allocation in agriculture. After recalling the
conceptual framework of the estimation of agricultural production costs, the first part presents
the empirical model, the quantile regression approach and the interval data processing
techniques used as symbolic data analysis tools. The second part presents the comparative
analysis of the econometric results between twelve European Member States, using the principal
components analysis and the hierarchical grouping of the estimation intervals, by discussing
the relevance of the exploratory graphs obtained for the international comparisons.
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"Applied economists increasingly want to know
what is happening to an entire distribution, to the
relative winners and losers, as well as to averages."
(Angrist and Pischke, 2009)

1. Introduction

The successive reforms of the Common Agri-
cultural Policy (CAP), the integration of the
agricultural systems of the Member States re-
sulting from the enlargement process of the Eu-
ropean Union (EU), both in the context of com-
petitive markets and markets subject to regula-
tion generates recurrent needs to estimate the
production costs of major agricultural products.

The analysis of agricultural production costs,
whether retrospective or prospective, is also a
tool for analyzing farmers’ margins. It makes it
possible to evaluate the price competitiveness
of farmers, one of the major elements of the de-
velopment or maintenance of agro-food chains
in certain European regions. Thus, the estima-
tion of production costs provides some partial
but essential insights into the questions posed
by the adaptation of European agriculture to
the context of agricultural markets, whether
national, European or international, both from
the point of view of the regulation of interna-
tional trade in agricultural products (see the
proposals for measures to combat market im-

1http://agriculture.gouv.fr/etude-sur-les-mesures-contre-les-desequilibres-de-marche-quelles-per
spectives-pour-lapres-quotas
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http://agriculture.gouv.fr/etude-sur-les-mesures-contre-les-desequilibres-de-marche-quelles-perspectives-pour-lapres-quotas
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balances in the post-quota dairy sector1), and
the successive reforms of the CAP (see the de-
bate on future CAP in 20202) or new challenges
for European agriculture caused by environ-
mental factors (climate change, environmental
and biodiversity management3).

Confronted more directly with price risks since
the abolition of production quotas in 20154,
European producers with few opportunities
for differentiation opt for cost reduction strate-
gies, seeking either to reduce structural costs
by playing on the volume of production, ei-
ther to reduce specific costs by optimizing the
management of inputs or opting for low-input
technical routes. However, structural adjust-
ment is not always possible due to constraints
(herd management, rights to produce, availabil-
ity) that can restrict access to the three main
production factors of land (e.g. mountain ar-
eas), working capital (financing conditions) or
work, whether salaried or self-employed. On
the other hand, the adjustment on specific in-
puts offers more flexibility as shown by the
adoption of reasoned practices leading to sav-
ings on the main items of expenditure such
as animal feed and veterinary fees. The evo-
lution of specific costs, not only globally but
also by product, thus constitutes an important
indicator for pig farmers in terms of techni-
cal management of the herd and adjustment
of their product mix to the demands of the
agricultural markets, taking into account the
resources and competitiveness factors available
to them.

Given these different issues, in contexts either
ex ante scenario development or ex post evalu-
ation of measures concerning possible agricul-
tural public policy options, we must be able to
provide information as suggested (Angrist and
Pischke, 2009) across the entire distribution of
production costs, thus making it possible to
meet the needs of simulations or impact analy-

sis within the various common organizations of
the market. In this perspective, from the obser-
vation of asymmetry and heterogeneity of their
empirical distribution, we propose a methodol-
ogy adapted to the problem of the estimation
of the specific costs of production relative to
the main agricultural reference products in a
European context where farm holdings remain
predominantly multi-commodity, despite a pre-
ponderance of specialized farms in some more
integrated sectors of agricultural production.
In this multi-product context, it is strategic
to generate for each of the main agricultural
products the central estimates of the cost distri-
bution, but also the lower or higher quantiles
with a view to selectivity of the instruments for
regulating agricultural markets for production,
and evaluation of public policies.

Given the heterogeneity of agricultural pro-
duction structures and productive choices in
Europe, how can the maximum amount of in-
formation be used to estimate agricultural pro-
duction costs? In response to this concern, we
propose an estimation methodology that can
provide information on the overall distribu-
tion of specific production costs for the main
agricultural reference products in a European
context. In order to overcome the constraint of
average estimators, sensitive to the asymmetry
or the extreme values of the distributions of
interest and likely to mask the inter-structural
differences, it is necessary to generate for each
of the main agricultural products not only the
median estimates of cost distribution but also
lower or higher quantiles. To this end, we
propose using a methodology to obtain esti-
mates of these quantiles of specific costs that
are conditioned by the product mix of farmers
(Desbois et al., 2017a). In order to demonstrate
the relevance of this approach, we will then
apply this methodology to estimate the spe-
cific costs of pig, given its place in the world

2https://www.sfer.asso.fr/source/Coll-trajectoire-2018/Programme-Future-of-CAP-30-05.pdf
3http://agriculture.gouv.fr/lagriculture-et-les-forets-au-coeur-de-la-cop23
4Cf. EU Milk Margin Estimate up to 2016, n°16: "Gross margins: a lot of instability and a record low level in third

quarter of 2016", https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/ag
ri-farm-economics-brief-16_en.pdf

5In 2017, pig production produced by the 28 European countries accounted for 20% in weight of pigmeat produced at
the world level (according to https://ec.europa.eu/agriculture).

https://www.sfer.asso.fr/source/Coll-trajectoire-2018/Programme-Future-of-CAP-30-05.pdf
http://agriculture.gouv.fr/lagriculture-et-les-forets-au-coeur-de-la-cop23
https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-farm-economics-brief-16_en.pdf
https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-farm-economics-brief-16_en.pdf
https://ec.europa.eu/agriculture
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production by the EU285, on a set of twelve Eu-
ropean states (EU12) where these productions
are significant in 2006, the base year chosen for
the period.
We first present the empirical model for esti-
mating the specific costs of production, derived
from an econometric cost allocation approach,
initially developed by Aufrant (1983) using mi-
croeconomic data to build an input-output ma-
trix (Divay and Meunier, 1980). Then, we intro-
duce the estimation methodology according to
the conditional quantiles proposed by Koenker
and Bassett Jr (1978), extended by Koenker
(2005). Next, we present the symbolic data anal-
ysis procedures used to explore the empirical
estimates of conditional quantile distribution
intervals based on the concepts and methods
provided by the symbolic approach (Bock and
Diday, 2000; Billard and Diday, 2006). Then,
we present the graphs from the analysis tools
for symbolic data applied to the estimation
intervals of the conditional quantiles. Finally,
we conclude on the relevance of this approach
applied to the pig production, proposing an ex-
tension of this type of analysis at the regional
level.

2. Conceptual framework and
methodological aspects of cost allo-
cation

Surveys specific to large agricultural commodi-
ties are conducted according to the production
workshop to provide detailed data on opera-
tional production costs, such as that used by
the French pig Institute (IFIP) on specialized
pig producers for France6. However, these tech-
nical and economic surveys are relatively ex-
pensive, making their generalization to all Eu-

ropean pig farms financially unbearable. Also,
this work is situated in the cost allocation
framework of the factors to multiple produc-
tions, initiated on a European scale by INRAE7

works (Butault et al., 1988) financed by the Eu-
ropean Commission (EC), allowing to estimate
production costs on the basis of the Account-
ing Information Network (FADN), accounting
survey harmonized on definitions about the
professional holdings and the accounting, tech-
nical and financial aggregates.

2.1. The empirical model for estimating the spe-
cific costs of production

In EU agricultural accounting systems, the
recording of charges is done at the farm level
and does not provide a direct estimate of the
production costs incurred by that farm for each
of the agricultural crops undertaken. From
the accounting records, the farm holding data
sheet8 of the FADN survey provides individu-
ally by farm the amount of the gross products
generated by the various speculations and the
one of specific costs, the sum of the recorded
input purchases. So, by regression of specific
costs on gross products, it becomes possible to
estimate the allocation coefficients of expendi-
ture to the main agricultural products, called
’specific coefficients of production’. The gross
margin Mi of the farm holding i is defined as a
difference between the sum of the gross prod-
ucts xi and the sum Yi of the specific costs9:
Mi = xi −Yi.
The sum of specific costs is linearly decom-
posed according to each production j, as fol-
lows :

Yi =
p

∑
j=1

γjx
j
i + εi with εi i.i.d. (1)

6https://www.ifip.asso.fr/fr/resultats-economiques-elevages-de-porc.html
7Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, formerly Institut national de la

Recherche agronomique (INRA).
8The questionnaire used to establish this farm holding data sheet and the methodology of the FADN survey are

available at: http://wwww.agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable-610/resea
u-d-information-comptable.

9Throughout this text, we use the classical convention in mathematical statistics to denote the endogeneous variable by
the Y symbol and the exogeneous variables by x. Conversely in a previous paper published to present the empirical model
(Desbois et al., 2013), the econometrical convention using the x symbol for inputs and the Y symbol for outputs have been
used.

https://www.ifip.asso.fr/fr/resultats-economiques-elevages-de-porc.html
http://wwww.agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable-610/reseau-d-information-comptable
http://wwww.agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable-610/reseau-d-information-comptable
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implying: Mi = ∑
p
j=1 xj

i − ∑
p
j=1 γjx

j
i + εi =

∑
p
j=1 (1− γj)xj

i + εi.
Thus, the allocation of the specific costs of the
farm holding i to the set J of the productions
carried out by this conceptual model makes it
possible, because of the complementation to
the unit, to deduct the unit rates of gross mar-
gin α̂ from the estimate of the specific produc-
tion coefficients γ̂j for each of the J considered
productions: α̂j = (1− γ̂j) j = 1, ..., p
The linear decomposition of the gross margin
leads us to estimate the specific production co-
efficients of the stochastic equation 1 for com-
parison:

• on the one hand, according to the Gaus-
sian regression methodology, the ordi-
nary least squares estimate µ̂OLS(Yi) =

∑
p
j=1 γ̂OLS

j xj
i coincides with conditional

expectation;
• on the other hand, according to the

quantile regression theory, the estimate
µ̂q(Yi) = ∑

p
j=1 β̂

(q)
j Y j

i is obtained by solv-
ing an optimisation problem, cf. infra
eq. 6, and expressed as the conditional
quantiles of order q, in order to take into
account the intrinsic heterogeneity of the
distribution of specific costs as shown in
the following section on the estimation
methodology.

2.2. The interest of conditional quantiles in the
estimation of agricultural production costs

The standard specification of the classical
regression based on conditional expectation
raises certain problems which would be risky
to neglect in the perspective of the establish-
ment of benchmarks on production costs, into
account the challenges of competitiveness for
the various sectors. Firstly, in a context of us-
ing the European FADN as an empirical basis
for estimating the specific production costs, the
stochastic assumptions of the Gaussian linear
model may not be satisfied: indeed, the asym-
metry of the distributions of specific costs (con-
centration for lower values and dispersion of
values higher than average, or vice versa) lead

us to rejecting the assumption of normality of
errors. In addition, given the selection method
specific to each national FADN (for example,
the French FADN is a survey administered ac-
cording to the quota method), the accounting
data are not always collected according to a
stratified random sampling design allowing to
deliver inferences such as interval estimation
based on a parametric distribution, even in the
asymptotic case.
The conditional estimation of quantiles was de-
veloped in Koenker and Bassett Jr (1978) under
the name of ’quantile regression’ in order to
take into account the heterogeneity of the set
of values of an endogenous variable x in the
context of a linear model. When looking at
farms, this econometric method yields an esti-
mated distribution of specific costs for major
agricultural products and thus complements
the estimates obtained by classical mean regres-
sion, which only provides an average value
(expectation) of these same costs. Instead of
an interval estimate built on a normality as-
sumption, the quantile process provides an
empirical distribution of the estimates with-
out having to make assumptions about the na-
ture of this distribution or to follow a stratified
random sampling design. For a continuous
random variable x, under the assumption that
Fx, the cumulative distribution function (CDF),
is strictly monotonous, the qth quantile of the
population is the value µq such as x is less than
or equal to µq with probability q :

q = Pr[Y ≤ µq] = FY(µq) (2)

where FY is the CDF of Y. The qth quantile is
then defined as the image of the value q by the
CDF reciprocal function:

µq(Y) = F−1
Y (q) (3)

In quantile regression, the qth conditional quan-
tile of the production cost Y conditioned by all
the exogenous variables x determining input
consumption is the indexed function µq(Y|x)
ordered by q. Thus, we can formally define
the qth conditional quantile by the following
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expression:

µq(Y|x) = F−1
Y|x(q) (4)

where FY|x is the CDF of Y conditioned by x.
Following Cameron and Trivedi (2005), sup-
pose that the data generating process is a linear
model with multiplicative heteroscedasticity:

Y = x′β+u with u = x′α× ε and x′α > 0
(5)

where ε ∼ i.i.d.(0, σ2) is an identically and in-
dependently distributed random vector of zero
mean and constant variance σ2, and where α
and β are the parameters of interest.
Under this hypothesis , µq(Y|x, β, α), the qth

conditional quantile of the production cost Y
conditioned by x, α and β, is analytically de-
duced as follows:

µq(x, β, α) = x′[β + α× F−1
ε (q)]

where Fε is the CDF of the random error ε.
Thus, for a data generating process following a
linear model with multiplicative heteroscedas-
ticity (i.e. u = X′α × ε, the qth conditional
quantile of the production cost Y conditioned
by the x exogenous factors is linear in x. Based
on the parameters of interest, the qth quantile
estimate of the production cost converges to
β + α × F−1

ε (q) and therefore behaves mono-
tonically with respect to the quantile order q,
depending on the quantile function of the error
term, F−1

ε (q).
Following a typology proposed by
d’Haultfoeuille and Givord (2014), several
models can be distinguished:

i. Y = x′β + u with u = Kε with ho-
moscedastic residues (V(ε|x) = σ2) des-
ignated as the linear model of homo-
geneous slope conditional quantile (’lo-
cation shift model’). The case where
x′α = K is constant, corresponds to con-
ditional quantiles differing only by a con-
stant (µq(Y|x, β, α) = x′β + KF−1

ε (q) , all
showing the same slope and growing uni-
formly as the q order of the quantile in-
creases;

ii. Y = x′β + (x′α)ε with x′α > 0 with het-
eroscedastic residues, referred to as the
heterogeneous-slope conditional quantile
linear model (’location-scale shift model’).
The case where x′α > 0 corresponds
to heterogeneous and increasing slopes
(as functions of q): µq(Y|x, β, alpha) =
x′(β + αµq(ε)), involving fixed linear ef-
fects γq = β + αµq(ε) ;

iii. Y = x′γU with U random variable inde-
pendent of Y following a uniform distri-
bution over the interval [0,1] and such
that the function u −→ x′γU is strictly
increasing whatever x , is designated as
the random coefficient model. U corre-
sponds to an unobserved random com-
ponent determining the rank of the indi-
vidual within the Y distribution. Under
the distribution invariance assumption of
ranks, which is considered as a strong
hypothesis in the scientific literature, the
random coefficient γq would represent
the effect of a marginal change in x for
farms at the qth quantile of the ε distribu-
tion, based on unobserved characteristics.
For example, this distributional assump-
tion of rank invariance is equivalent to
assuming that median farms (q = 0,5) in
terms of input productivity would main-
tain this rank, regardless of the different
levels of production.

2.3. Estimation and test procedures

The Ordinary Least Squares (OLS) estimator
can be written as a solution to an optimization
problem that minimizes the sum of the squared
deviations (L2 norm):

β̂OLS = arg min
β∈Rp

{
∑

i
(yi − x′i β)

2

}
= arg min

β∈Rp

{
e′δ2(Y− x′β)

}
(6)
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where e =

1
...
1

 is the unit vector in Rn, space

of observations, and δ2(Y− x′β) , the vector of
quadratic differences.
Similarly, the quantile regression is defined for
each quantile order q as the solution of the
problem of minimizing the sum of weighted
absolute deviations (norm L1):

β̂(q) = arg min
β∈Rp

{ ∑
i∈{i|yi≥x′i β}

q|yi − x′i β|+

∑
i∈{i|yi<x′i β}

(1− q)|yi − x′i β|}
(7)

which can be written in matrix form as follows:

β̂(q) = arg min
β∈Rp

{qe′(Y− x′β ≥ 0)δ1[Y− x′β]+

(1− q)e′(x′β−Y ≥ 0)δ1[x′β−Y]},
with e′(Y − x′β ≥ 0), indicator vector of ob-
servations i such as yi − x′iβ ≥ 0, and δ1, the
vector of absolute deviations.
Let xi = y′iβq + ei with ei = ui − vi, ui =
ei1(ei > 0) , vi = |ei|1(ei < 0) . Then, like the
L1 regression (Barrodale and Roberts, 1973),
quantile regression can be formulated as a pri-
mal problem of linear optimization, which is
expressed in matrix form as follows:

β̂(q) = arg min
β∈Rp ,(u,v)∈Rn×n

{qe′u + (1− q)e′v} (8)

under the constraint Y = x′β + u− v.
This program can be reformulated as an equiv-
alent dual optimization problem:

Maxz{y′z} (9)

under the constraint xz = (1 − q)xe for
z ∈ [0, 1]n

Thus, the methods for solving the linear
optimization problem developed for the L1
regression easily extend to quantile regres-
sion (Koenker and d’Orey, 1994). The sim-
plex method (Dantzig, 1948) has an algorith-
mic complexity in O(n6), the ’interior point’

method (Karmarkar, 1984) of algorithmic com-
plexity O(n3.5) is preferable in practice as soon
as the sample size is important. For large sam-
ples, Portnoy et al. (1997) showed that a com-
bination of the ’interior point’ algorithm10 and
the Madsen and Nielsen (1993) smoothing al-
gorithm for objective function makes quantile
regression computationally competitive with
least squares regression.
The weighted conditional quantiles have been
proposed as L-estimates in linear heteroscedas-
tic models by Koenker and Zhao (1994). They
are defined by a set of weights ωi; i = 1, . . . , n
and the following minimization problem:

β̂ω(q) = arg min
β∈Rp

{ ∑
i∈{i|yi≥x′i β}

ωiq|yi − x′i β|+

∑
i∈{i|yi<x′i β}

ωi(1− q)|yi − x′i β|}

(10)
The weighted estimation procedure uses the
’predictor-corrector’ implementation of the
primal-dual algorithm proposed by Lustig et al.
(1992). Let us assume the following regularity
conditions:

i. The cumulative distribution functions
Fi(Y) of input expenditures for a given
product mix are absolutely continuous
with densities fi(Y) continuous and uni-
formly bounded on ]0,+∞[ at ξ =
µq(Y|xi);

ii. ∑0 = limn−→∞
1
n ∑n

i=1 xix′i exists and is
positive definite;

iii. ∑1 = limn−→∞
1
n ∑n

i=1 fi(ξi)xix′i exists
and is positive definite;

iv. Supi=1,...,n‖xi‖ ∼ 0(
√

n), as a normaliza-
tion factor;
Pollard (1991) shows that under condi-
tions i and ii, β̂q −→ βq, the estimator
converges in probability. In addition, un-
der the set of conditions i, ii, iii et iv,
Pollard (1991) obtains the asymptotic nor-
mality:

√
n(β̂q − βq) −→

L
N (0, q(1− q)Σ−1

1 Σ0Σ1)

(11)
10The weighting ω is introduced by the standard instruction weight into the QUANTREG procedure of the SAS 9.2

software.
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Finally, under the equality assumption fi(ξi) =
fε(0) and the independence of ξi , this result is
simplified as follows:

√
n(β̂q − βq) −→

L
N (0, σ2(q)Σ−1

0 ) (12)

with σ(q) =
√

q(1−q)
fε(0)

.
In addition, under conditions iii and iv, if
the errors attached to the ith observation εi =
yi − x′i β are identically and independently dis-
tributed, with distributions Fi admitting a den-
sity f = F such as f (F−1(q)) > 0 in the neigh-
bourhood of q, then Koenker and Bassett Jr
(1982) show that:

√
n(β̂q − βq) −→

L
N (0, ω2(q, F)Ω−1) (13)

with ω(q, F) =

√
q(1−q)

f (F−1(q)) and

Ω = lim
n→∞

1
n ∑n

i=1 xix′i .
These results can be used to construct confi-
dence intervals for estimates using three proce-
dures: inverse density function, rank method,
or resampling algorithm. The inverse den-
sity function estimation is the most direct and
the fastest method, but it is sensitive to the
hypothesis of identically and independently
distributed data (iid). For data that are not
iid, the rank method, which calculates con-
fidence intervals by reversing the rank score
test, is preferred. However, based on the sim-
plex method, the rank method generates signif-
icant computation times for large datasets. The
resampling method, based on the bootstrap
technique, makes it possible to overcome all
assumptions but is unstable for small samples.
Given the size of the FADN sample, its non-
random selection and the existence of three
distinct a priori sub-populations (specialized
or non-pig Types of Farming), we opted for
the resampling method, based on the use of a
Markov chain marginal bootstrap (MCMB) be-
cause, without distributional hypothesis on the
error term, this method gives robust empirical
confidence intervals in a reasonable computing
time (He and Hu, 2002).

2.4. Symbolic analysis of empirical distributions
of specific costs

2.4.1 Principal component analysis of distri-
butions

The PCA of the interval endpoints

In the extension of the principal components
analysis (PCA) to interval data proposed by
Cazes et al. (1997), called V-PCA11 , a nor-
malised PCA of the interval endpoint array
is carried out. In this way, the vertices of the
hyper-rectangles are vectors of Rp , while the
estimates of the conditional quantiles are ele-
ments of RN . Thus, the V-PCA provides a
dual representation of the specific empirical
cost distributions represented by their estima-
tion intervals, which are the symbolic objects,
and conditional quantiles which are the de-
scriptors. As in classical PCA, the proper sub-
space (optimal for the dual representation) is
structured by orthonormal axes vm(1 ≤ m ≤
p), maximizing the sum of squares of vertex co-
ordinates ψm = Zvm and satisfying in RN the
following equations involving the characteris-
tic eigenvector equation vm and eigenvalues
λm of the matrix 1

N Z′Z:

1
N

Z′Zvm = λmvm (14)

The dual analysis Rp leads to a similar equa-
tion

1
N

ZZ′wm = λmwm (15)

having the same non-zero eigenvalues but
eigenvectors w m such that: vm = λ−1/2

m Z′wm.
The interpretation of the axes of the V-PCA is
based on the conditional quantiles (variables
of the V- PCA) presenting the strongest contri-
butions. In normalized PCA, the contribution
to the inertia of the variable j to the axis m is
calculated as the square of the correlation be-
tween the factorial axis and the variable (facto-
rial coordinates). The coordinates of the projec-
tions of the estimation interval endpoints of the
conditional quantiles (vertices s (i)) of the em-
pirical distribution ωi specific costs (symbolic

11Vertex Principal Component Analysis
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object) on the main factorial axes are provided
by the relation:

ψi,m = Zivm (16)

The representation of the empirical distribu-
tion ωi on the factorial axis m is provided by
the projections of the estimation interval end-
points (hyper-rectangle of maximum inaccu-
racy, HRIM). The projection of the HRIM on
a factorial plane provides a maximum impre-
cision rectangle (RIM) for the empirical dis-
tribution represented by the symbolic object
ωi.
In order to avoid the over-dimensioning pro-
jection bias of projected rectangles, Chouakria
et al. (1998) propose to retain among the repre-
sentations those whose vertices are best repre-
sented by using the relative contribution (CTR)
as a criterion defined in cosine terms, that is,
for an estimated interval endpoint s(i) of the
quantile distribution i:

CRTs(i),m =
p

∑
j=1

(zs(i),jvm)
2/

p

∑
j=1

z2
s(i),j (17)

The problems of symbolic object representation
are studied by Verde and De Angelis (1997)
who proposed a better adjustment of convex
envelopes.

The PCA’s estimate interval centers

Let be zi = [yj
i ; yj

i ], the interval estimate of the
jth conditional quantile for the empirical distri-
bution i of specific costs. This interval estimate
can be represented by the data of the couple

(mij; rij) where mij =
yj

i+yj
i

2 is the interval mid-

point and rij =
yj

i−yj
i

2 its radius. The T matrix
of the interval data is then constituted by the
concatenation of the matrix of the interval esti-
mate midpoints with the matrix of the interval
estimate radii.

The PCA of the interval centers (PCA-IC) in
RN , the space of the specific cost distributions,
corresponds to the following eigenvector equa-
tion:

1
n

M̃′M̃vm = λmvm (18)

where M̃ is the matrix M = [mij] standard-
ized by the standard deviation of the interval
centers, vm and λm are respectively the eigen-
vectors and the eigenvalues associated with
the inertia operator 1

n M̃′M̃. It is therefore
the diagonalization of the matrix 1

n M̃′M̃ of
quantile interval estimates across all specific
cost distributions. The centers of quantile
intervals estimates12 are projected on the fac-
torial planes, with possibly the endpoints of
the intervals estimates (vertices) as additional
projections.

In the vertice-based analysis (PCA-V), these
are considered as independent statistical units.
In order not to loose information on the size
and shape of the hyper-rectangles, Lauro and
Palumbo (2000) introduce a constraint of cohe-
sion between the vertices. The method is based
on maximizing the variance between symbolic
inter-objects. Let A be the Boolean matrix in-
dicating the membership of the N estimation
interval ends to the n empirical distributions.
The expression of the variance between sym-
bolic objects is given by:

1
N

Z′A(A′A)−1 A′Z (19)

If all the empirical distributions have the same
number of intervals estimates, they have the
same number of vertices N

n = 2p (in our case
study, the same number of conditional quan-
tiles were estimated for each empirical distri-
bution), then A′A = 2p In.
Let PA be the orthogonal projector associated
with the A matrix on the reference sub-space:

PA = A(A′A)−1 A′ (20)
12It should be noted that Markov chain marginal estimation intervals (MBMC) are not symmetrical in contrast to

asymptotic estimation intervals, whereas interval-based PCA-IC assumes in its representation the symmetry with respect
to the midpoint. Nevertheless, we propose to use the point estimate as a center and to introduce the concept of lower
radius and upper radius to locate the endpoints of the MBMC interval.
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In the space RN , the factorial axes of iner-
tia are obtained as a solution of the following
eigenvalue equation:

1
N

Z′PAZṽm = λ̃mṽm (21)

where λ̃m and ṽm are the eigenvalues and the
eigenvectors associated with the inertia opera-
tor 1

N Z′PAZ.
The coordinates of the hyper-rectangle associ-
ated with the empirical distribution are then
computed as follows:

ψ̃i,m = Zi ṽm (22)

The analysis in Rp is equivalent to solving the
following equation for the eigenvalues:

(A′A)−1/2(A′ZZ′A)(A′A)−1/2w̃m = λ̃mw̃m
(23)

The relative contributions of the variables
(CRT) are defined in the same way as for the
V-PCA. These CRTs are also used to select the
empirical distributions to be represented on
the factorial graphs. As in V-PCA, representa-
tions of empirical distributions as a symbolic
object are constructed by the Maximum Cover-
ing Area Rectangular (MCAR). If one compares
the V-PCA with the IC-PCA proposed by Cazes
et al. (1997), where the PCA is performed only
on the interval data centers standardized with
the correlation matrix of the centers, several im-
provements were introduced: first, the data are
standardized by the standard deviation of the
vertices considered as active units in the analy-
sis, whereas they are considered in the IC-PCA
as additional units; more generally, this can be
considered as an improvement of the IC-PCA
because it can be applied to data constrained
by logical or hierarchical relationships.

PCA ranges of interval estimates

Partial PCA can also be used to better empha-
size the differences between symbolic objects.
The following section shows a partial PCA

where the vertices of the hyper-rectangles are
centered relative to the In f value.

In order to only take into account only the
sizes and shapes of the hyper-rectangles associ-
ated with the descriptions, Lauro and Palumbo
(2000) proposed a PCA based on scaling in-
terval data that summarizes useful informa-
tion to describe the size and shape of sym-
bolic objects, with the following transformation

µ(zj
i) = xj

i − xj
i . The Description Potential – DP

(De Carvalho, 1992, 1997), is the hyper-volume
associated to the description of the ith empirical
distribution, domain defined by the cartesian
product of the ranges Zi = z1

i × · · · × zj
i . . . zp

i
of p parameters associated with the assertion13

ai of the symbolic object ωi. Its measure-
ment is defined by: π(ai) = Πp

j=1µ(zj
i) where

µ(zj
i) = zj

i/sj is the normalized range relative

to the domain Dj = zj
i ; i ∈ I of the descriptor

Zj. However, if the measure of one of the de-
scriptors tends to zero, then the description
potential tends to zero. To overcome this draw-
back, we use the linear measure of the poten-
tial of an assertion ai of the symbolic object
ωi : σ(ai) = ∑

p
j=1 µ(zj

i).

Let all the assertions of the empirical distribu-
tions of specific costs be a1, . . . , ai, . . . , an and
X be the n times p matrix of general term

xi =
√

zj
i , then the PCA of ranges estimates

(range transformation PCA) is defined by the
factor decomposition of the total linear descrip-
tion potential LDP = ∑n

i=1 σ(ai), allowing a
different geometrical representation of the ver-
tices than in the V-PCA.

The transformation of the data into a range
corresponds to an affine translation where the
minima x1

i , . . . , xj
i , . . . , xp

i are all located at the
origin. Thus, the search for an optimal rep-
resentation subspace for the size and shape
of each symbolic object is made from a non-

centered PCA of maxima x1
i , . . . , xj

i , . . . , xp
i

This Range Transformation PCA (RT-PCA)
13In the formalism introduced by symbolic analysis, an ‘assertion’ is the formal description of a symbolic object based

on a conjunction of properties expressed by variables whose associated functions apply to individuals.
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breaks down the criterion

LDP = tr(X′X) = tr(XX′) =
n

∑
i=1

σ(ai) (24)

according to the following characteristic eigen-
vector equations:

X′Xtm = µmtm (25)

and

XX′um = µmum (26)

Thus, the sum of the eigenvalues µm associated
with the eigenvectors tm in Rn and um in Rp

corresponds to the factorial decomposition of
the linear description potential:

p

∑
m=1

λm =
n

∑
i=1

σ(ai). (27)

The factorial coordinates of the representation
of the specific cost distributions in the optimal
subspace are given by:

φm = Xtm (28)

The absolute contribution (CTA), as the ratio
between the factorial coordinate and the eigen-
value, measures the contribution of the empiri-
cal distribution of specific costs to the potential
of description of the m th factorial axis; it is
defined by:

CTAi,m =
φ2

i,m

µm
(29)

The relative contribution (CTR) measures the
representation quality of the empirical distri-
bution in the chosen representation factorial
subspace:

CTRi,m =
∑M∗

m=1 φ2
i,m

∑
p
j=1 x2

i,j
(30)

The interpretation of the factorial axes is per-
formed according to the contributions (facto-
rial coordinates) of the estimated quantiles esti-
mated for the empirical distributions of specific
costs, as descriptors of the symbolic objects:

CTAj,m = t2
j,m (31)

The RT-PCA can be represented by the projec-
tion of the factorial coordinates of the max-
ima. The distributions described by condi-
tional quantile estimates, share representations
in hyper-rectangles similar in size and shape if
they are projected in the same neighbourhood.
If all the terms of matrix X are positive then the
first eigenvector u1 and the associated factor

φ1 = Xt1 (32)

are positive (Lauro and Palumbo, 2000). The
first major component can therefore be inter-
preted as a size factor, while the higher order
factors order the empirical distributions accord-
ing to their shape characteristics.

Mixed Strategy PCA of Estimation Intervals

The mixed strategy in principal component
analysis of symbolic objects (SO-PCA) com-
bines the vertex PCA (V-PCA) and the range
PCA (RT-PCA) in a three-step approach to ac-
count for differences in scale and shape be-
tween empirical distributions of specific costs:

i. PCA ranges to extract the main axes that
best represent the scales and forms of em-
pirical distributions of conditional quan-
tiles;

ii. Projection from Z to Ẑ = PAZ in order to
take into account the relations between
the different extrema, given the order re-
lationships between the different condi-
tional quantiles of the distribution of spe-
cific costs ;

iii. PCA of the line projections Ẑi on the
sub-space of optimal representation φ =
φ1, . . . , φm, . . . , φM∗ by the projector Pφ =
φ(φ′φ)−1φ′.

The mixed analysis strategy is therefore based
on the solution of the following eigenvector
equation:

Ẑ′PφẐ = Z′A(A′A)−1/2Pφ(A′A)−1/2 A′Zsm

= ρmsm (33)

where the diagonal matrix (A′A)−1 is broken
down into the product (A′A)−1/2(A′A)−1/2
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for symmetry reasons, with respectively ρm
and sm, eigenvalues and eigenvectors associ-
ated with the usual ortho-normality conditions.
The interpretation of the results of the analysis
depends on the choice of the projection opera-
tor Pφ, whose diagonal term, interpretable as a
normalized weight, is equal to:

φi(φ
′
iφi)

−1φ′i =
M∗
∑

m=1
φ2

i,m/µm (34)

2.4.2 Automatic clustering of empirical dis-
tributions of specific costs

All empirical distributions of specific costs
Ω = ω1, . . . , ωi, . . . ωn are described as
symbolic objects by a set of p = 6 de-
scriptors14 which are the conditional quan-
tiles X = Q̃0.10, Q̃0.25, Q̃0.50, Q̃0.75, Q̃0.90 =
x1, . . . , xj, . . . , xp. On the basis of interval es-

timates of conditional quantiles zj
i = [In f =

xj
i ; Sup = xj

i ], the dissimilarities between in-
terval estimates of the jth conditional quantile
zi = [xi; xi] and zk = [xk; xk] respectively as-
sociated with the distributions characterizing
country i and country k, can be computed ac-
cording to the following three standards:

• L1 Metric (sum of absolute differences)15:

δ1(z
j
i , zj

k) = |x
j
i − xj

k|+ |x
j
i − xj

k|
• L2 Metric (sum of quadratic differ-

ences)16:

δ2(z
j
i , zj

k) =

√
(xj

i − xj
k)

2 + (xj
i − xj

k)
2

• L∞ Metric ((Chebyshev’s distance)17:

δ2(z
j
i , zj

k) = Sup(xj
i − xj

k); (xj
i − xj

k)

For each of these metrics M on R, a dissim-
ilarity between empirical distributions based
on the differences between intervals estimates
of the conditional quantiles can be calculated
according to a quadratic criterion: d(ωi, ωk) =

(∑
p
j=1 δ2

M(zj
i , zj

k))
1/2.

The matrix of dissimilarities between national
empirical distributions of specific costs can be
used to directly apply the classical methods of
automatic clustering based on dissimilarities
such as the minimum ultrametric (single link-
age), the maximum ultrametric (complete link-
age), and the centroid, in a way similar to the
Ward’s method. Among the automatic clus-
tering procedures developed for interval data,
Chavent et al. (2007) proposes a divisive hier-
archical clustering algorithm on symbolic data
(DIVCLUS-T) as an extension of the DIV pro-
cedure (Chavent, 1998), valid for both interval
data and categorical data. Subsequently, we de-
tail the principles on which the this automatic
clustering procedure is based for interval data.
The divisive hierarchical clustering algorithm
recursively splits each cluster into two sub-
clusters, starting from the whole set of sym-
bolic objects Ω = ω1, . . . , ωi, . . . ωn . At each
partition in k symbolic clusters Pk = C1, . . . , Ck,
a cluster has to be divided in order to get a
partition Pk+1, with k + 1 clusters, optimizing
the selected adequacy criterion based on the
inertia.
The inertia of a cluster is defined by I(Cl) =

∑i∈Cl
µid2

M(zi, g(Cl)) where wl is the weight of
the symbolic object i and g(Cl) is the cluster
centroid defined by:

g(Cl) =
1

∑i∈Cl
µi

∑
i∈Cl

µizi

The within-cluster inertia is defined by the sum
of the inertias over all clusters:

W(Pk) =
k

∑
l=1

I(Cl).

The between-cluster inertia is defined by the
inertia of the centroids with regards to the g

14This choice of a small number of descriptors was made for comparative convenience with some more classical graphic
approaches Desbois et al. (2013) and Desbois et al. (2017b); however, like these earlier works, it could be extended without
disadvantage to sets of cardinality descriptors p = 9 (deciles), or even p = 99 (percentiles) if the analysis objectives required
it.

15Labelled ’Type L1’ in SCLUST.
16Labelled ’Euclidean’ in SCLUST.
17Labelled ’Hausdorff’ in SCLUST.
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overall centroid of Ω, such as follows:

B(Pk) =
k

∑
l=1

µkd2
M(g(Cl), g) (35)

where µk = ∑k
l=1 µl .

For a partition Pk, the total inertia is the sum
of the within-inertia with the between-inertia:
I(Ω) = W(Pk) + B(Pk) . Hence, minimizing
the heterogeneity (measured by W) is equiva-
lent to maximizing the homogeneity (measured
by B).
Generated by the logical binary choice (yes/no)
to a numerical binary question Q = [Is X j ≤
c?], let us denote by Al , Al the induced bipar-
tition of a cluster Cl formed of nl objects. In
order to choose among the nl − 1 possible bi-
partitions of the Cl cluster, a discriminating
criterion can be defined by the following ratio:

D(Q) =
Bj(Al , Al)

I j(Cl)
= 1− W j(Al , Al)

I j(Cl)
, (36)

where the between-cluster inertia Bj(Al , Al)

and the inertia I j(Cl) are computed with re-
gards to the jth variable of the X matrix.
Hence, minimizing the within-cluster inertia
W(Al , Al) is equivalent to maximizing the
between-cluster inertia B(Al , Al), and there-
fore the D(Q) discriminating criterion.
As in Ward method, the ’upper hierarchy’
(Mirkin, 2005) of a partition Pk is indexed by
the height h of a cluster Cl , defined par its
between-cluster inertia as follows:

h(Cl) = B(Al , Al)

=
µ(Al)µ(Al)

µ(Al) + µ(Al)
d2(g(Al), g(Al)) (37)

The DIVCLUS algorithm splits the cluster C∗l
that maximises h(Cl) , ensuring that the next
partition Pk+1 = Pk ∪{Al , Al}−Cl has the min-
imum within-cluster inertia value, with respect
to the rule

W(Pk+1) = W(Pk)− h(Cl) (38)

3. Data collection and distribu-
tional analysis of specific agricultural
costs in the EU

3.1. European RICA, the model, the aggregates
and the countries studied

Since its establishment in 196518, the European
RICA has been defined by European regula-
tions specifying the implementation modalities
and their revisions, the most recent being the
EC Regulation n ° 1217/2009 published in
JOE L328 of 15/12/2009 for an entrance into
force on 01/04/2010. Together with the Cen-
sus of Agriculture and the Structural Surveys,
it completes the tripod of the Community
achievement (’Acquis communautaire’) on agri-
cultural statistics, which makes it possible to
define the population of agricultural holdings,
to follow the evolution of their productive
structures, and finally to evaluate variations in
their income. Focused from the outset on mon-
itoring the income of so-called ‘professional’
farmers and analyzing the economic function-
ing of their farms, it has gradually established
itself as a vital database for ex ante and ex-post
analysis of the impact of agricultural policy
measures, in particular those related to the
reforms of the Common Agricultural Policy
(CAP). As underlined (Chantry, 1998 and 2003),
the European FADN is the result of a process of
adaptation and harmonization of pre-existing
national arrangements within the Member
States. European FADN as a database is fed
by national FADN which despite the harmo-
nization of accounting and technical- economic
concepts carried out19 under the auspices of
the Directorate-General for Agriculture (DG
Agri), presents a certain number of specificities
relating mainly to the sample selection (sam-
pling plan, selection method, economic size
thresholds) and the management of the sur-
vey. For each Member State, the data for each
holding (‘record’) collected at European level
(‘Community record’) are derived from data
collected at national level (‘national record’).

18European regulation n°79/65/CEE, of 15 June 1965.
19by the unit L3 in charge of the relations with the national operators of the FADN.
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For some Member States such as Belgium and
the Netherlands, the national FADN survey
questionnaire collects more information than
the European FADN questionnaire. Conversely,
for other Member States, the ‘European file’
incorporates as missing data the possibilities of
exemption provided for by the Regulation due
to limitations or constraints related to national
FADN. However, as regards the accounting
aggregates used in our work (gross products
and specific expenses), the definitions are har-
monized in both plant and animal production;
the elements of differentiation that can influ-
ence estimates via weighting are mainly in
the reference population of farms defined as
professional (economic size thresholds) and in
the sampling methodology (random selection
versus quota selection).

Equation (5) is the basic model for estimating
conditional quantiles of the direct costs spe-
cific to the studied products, including the pig,
our product of interest. Dependent variable of
the empirical model, denoted by Y, the specific
costs20 are defined as the sum of the following
terms:

• Crop-specific inputs, i.e. items of expen-
diture on seeds and seedlings, fertilizers
and amendments, plant protection prod-
ucts, and other crop-specific costs ;

• Livestock-specific inputs, which include
herbivore, granivore, and other animal-
specific expense items ;

• inputs specific to forestry activities.
Independent variables of the empirical model,
for each of the productions implemented by the
multi- product farm, the raw products21 (de-
noted by X) relate to all plant, animal and ani-
mal products, or even forest products, where
appropriate, with the following breakdown
into fifteen aggregates: wheat, other cereals,
industrial crops, protein crops, oilseeds, hor-
ticultural productions, fruit, wine, other veg-
etable or forest products, cattle, pig, poultry,
dairy milk, other animal products, other raw

products. The sub-populations of farms se-
lected as the basis of estimation are those cor-
responding to the following European FADN
samples: for 2006, the following twelve Mem-
ber States were selected (Austria, Belgium,
Denmark, France, Germany, Hungary , Italy,
Netherlands, Poland, United Kingdom and
Sweden) together noted EU 12. The weighted
conditional quantile estimation is carried out
using the SAS software, by the QUANTREG
procedure associated with the WEIGHT in-
struction, for each of the countries but also
for each of the dimension classes.

3.2. Distributional characteristics of specific agri-
cultural costs

According to Angrist and Pischke (2009), ’For
better or worse, 95% of estimates in econo-
metrics are provided by averages’ however
’applied economists want more and more to
know what’s going on, not just on average,
but for the whole distribution, the losers as
the winners’. Thus, in many evaluative and
prospective studies, it is often useful to be able
to compare results across a large number of
sub- populations, to reflect the heterogeneity
of the populations studied, and to be able to
propose more realistic adjustments.

The non-parametric estimate of the density of
specific costs by the kernel method (Figure 1)
highlights the asymmetry (2,377), indicated by
the difference between the median (€ 33,930)
and the average (€ 47,446) pushed towards the
distribution right tail by the weight of extrema.
This asymmetry, in addition to the dispersion
of cultivated areas, reveals the underlying het-
erogeneity in the choice of specific production
factors.
For such skewed distributions, it is well known
that the median is a better estimator of cen-
tral tendency than the arithmetic mean, with
regards to the mean absolute error. However,
very often specific cost distributions are not

20The specific costs are recorded by the European FADN under the variable label SE281.
21The gross product is defined, with the variations of stock, as the total gross production from which the total of the

intra- consumptions is subtracted.
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Figure 1: Specific costs, empirical distribution of French FADN, 2006.
Source: author’s processing, from French FADN 2006.

Figure 2: Specific costs per unit of gross product, empirical distribution of French FADN, 2006.
Source: author’s processing, from French FADN 2006.
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unimodal, as is the case for example for the
distribution of specific costs per unit of gross
product (Figure 2) that we define as specific
costs. Other values may then be needed to bet-
ter characterize the form of the empirical dis-
tribution of specific costs, such as those of the
lower quartile (Q1 = 0.189) and higher quartile
(Q3 = 0.413) providing more precise informa-
tion on the empirical distribution of specific
costs than that given by the single estimate
provided by the average.

First of all, if we compare the countries of the
EU12 set in terms of central tendency of spe-
cific costs per farm (Table 1), the median varies
from € 2,700 (Italy) to € 10,500 (Austria) for a
first group also comprising Poland. Then, we
distinguish an intermediate group with France
and Sweden between € 25,000 and € 29,000, re-
spectively. Finally, the third group comprising
the other countries with median costs per farm
varying from € 34,500 for Denmark to € 56,000
for the Netherlands, and also including Ger-
many, Belgium and the United Kingdom.

Secondly, if we compare these EU12 countries
in terms of dispersion, the coefficient of vari-
ation (CoV)22 is between 134% for Belgium, a
country with the most homogeneous produc-
tion structures (followed by Austria, France
and Sweden) and 1023% for Hungary which
appears with Italy as the most heterogeneous
country.

Although these distributions (Figure 3) are all
right-skewed with a large number of extreme
values , they differ however in their form: more
skewed with large right tails (greater disper-
sion of the values above the median) as in Italy,
Spain, Poland or Hungary, with a skewness be-
tween 5 and 6; or less skewed as in Denmark,
Austria, the Netherlands, Belgium or France
(with a skewness of 1.5 to 2.5), with the United
Kingdom having an intermediate skewness of
a factor of 4. In addition, the kurtosis varies
from a minimum of 17 for the Netherlands, or
23 for Denmark or 37 for Belgium, to a maxi-

mum of 210 to 315 for Poland, Spain or Italy.
For very asymmetric distributions with ex-
treme values, the interquartile ratio of disper-
sion (IRD)23 is preferable to the CoV for mea-
suring relative dispersion: Austria, France and
Germany (between 130 and 150%) have the
lowest relative dispersion, while Denmark has
the highest relative dispersion of specific costs
(420%). By ignoring the extreme values of in-
herited farms from increasingly marginal col-
lective structures in its production, the IRD
reduces the relative dispersion of Hungary to
that of Italy.
Thus, the lowest levels and dispersions per
farm are found in southern and eastern Euro-
pean countries, with more right skewed distri-
butions, while the highest levels and disper-
sions are observed in countries in the North
and West of Europe, with distributions less
skewed than the previous ones. Since specific
cost distributions have many extreme values,
it is more appropriate to use quartiles to lo-
cate the scale of specific costs, as well as the
interquartile range or interquartile ratio of dis-
persion to measure dispersion rather than the
mean, standard deviation and coefficient of
variation are weight-sensitive to these extreme
values.
The ratio of the specific costs to the raw prod-
ucts allows to analyze the productivity of the
inputs and to compare it with that of the other
production factors. Therefore, it is interesting
to be able to describe by structural type the
structural differences from the point of view
of the specific costs between countries where
the production is located: this angle of anal-
ysis is therefore developed in the rest of the
presentation.

4. Econometric results: national es-
timates of specific costs

As we have shown in the methodological sec-
tion, the estimation according to the condi-

22Expressed as a percentage, the coefficient of variation reports the value of the standard deviation to the mean :
CoV = σ/µ

23As a ratio of interquartile dispersion at the median level, the quartile dispersion coefficient IRD = (Q3 − Q1)/Q2
provides a non-parametric measure of relative dispersion.
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Table 1: National distributions of specific costs per farm, EU 12.
Source: author’s processing, from EU-FADN 2006. Nota bene: (*) As a ratio of interquartile dispersion at the median
level, the interquartile dispersion coefficient IRD = ((Q3 −Q1))/Q2 provides a non-parametric measure of relative
dispersion.

Country Sample Mean CoV Skewness Kurtosis D1 Q1 Median Q3 D9 IRD*
Austria 1 790 16 870 139 % 6.5 86.7 3 500 5 840 10 430 19 700 37 350 133 %
Belgium 1 040 74 150 134 % 4.5 37.1 11 270 21 980 43 660 90 370 166 150 157 %
Denmark 1 690 112 200 241 % 3.4 23.1 4 670 10 810 34 620 155 180 314 640 417 %
France 6 510 39 310 160 % 5.9 63.1 5 620 12 290 24 910 47 500 83 000 141 %
Germany 6 750 63 420 261 % 6.6 67.1 11 080 19 590 38 170 75 730 137 550 147 %
Hungary 1 690 14 850 1023 % 7.5 85.7 1 070 1 880 4 350 10 240 25 460 192 %
Italy 13 200 12 180 939 % 14.4 314.5 700 1 320 2 670 7 200 20 860 220 %
Netherlands 1 340 124 330 218 % 3.4 17.1 9 870 25 350 56 100 138 300 294 040 201 %
Poland 11 000 7 010 383 % 10.6 209.5 1 470 2 220 3 660 7 180 14 300 136 %
Sweden 850 53 970 187 % 8.5 111.6 7 300 15 840 28 850 67 030 122 760 177 %
United-
Kingdom

2 590 82 620 210 % 7.9 97.8 14 300 23 090 44 220 93 150 177 050 158 %

Total 56 180 22 250 570 % 9.0 135.9 1 010 2 010 5 050 18 070 51 490 318 %

Figure 3: Distribution of the specific costs per farm (SE 281 < € 750,000) by country, EU12.
Source: author’s processing, from EU-FADN 2006.
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tional quantiles makes it possible to carry out
a conditional allocation of the specific costs
by products, allowing the comparison of the
different workshops within the framework of
a multi-product exploitation based on gross
margin, its complement to the gross product.
We use this conditional allocation to provide
specific cost estimates to answer farm compet-
itiveness measurement questions, which are
asked by ex-ante or ex-post design and evalua-
tion of different agricultural policy options. In
the framework of the FACEPA research project,
the choice made by the managers in charge
of the Knowledge Based Bio- Economy pro-
gram (KBBE) of the 7th PCRD was made for
feasibility reasons on the three main agricul-
tural commodities that are wheat, milk and pig,
produced at a sufficient broad level in the Euro-
pean area to allow cross-country comparisons.
Quantile estimates are therefore computed for
each of the EU12 Member States in order to
test the national differentiation of the produc-
tive framework at European level. We have
chosen to analyze the estimates obtained for
the year 200624, in order to compare the results
of the conditional quantile approach later with
those of the Seemingly Unrelated Regressions
Equations (SURE) approach. Initially proposed
by Zellner (1962), the latter approach is the
standard procedure for estimating the GECOM
model of the FACEPA project.
Thus, we analyze the results obtained in par-
ticular for the pig, one of the conveniences
selected in the framework of the FACEPA
project25.

4.1. Comparative description of gross products for
pig between twelve EU countries

In 2010, according to EuroStat estimates26, the
EU-27 accounts for 24.4% of world pig produc-

tion. The European Union is behind China the
second largest producer in the world with 26
million tonnes in 2010. The number of pigs
slaughtered in 2010 was 302.6 million heads,
or 23% of the herd. The studied countries are
among the main producers in terms of tons of
carcasses produced, in descending order: Ger-
many (21.58%), Spain (13.33%), France (8.29%),
Poland (7.44%), Denmark (6.61%), Italy (6.15%),
the Netherlands (5.18%), Belgium (4.26%), the
United Kingdom United Kingdom (2.91%),
Austria (2.09%), Hungary (1.67%) and Sweden
(0.98%), or 80.5% of European production.
Even if the correlation with national statistics
is less good27, the hierarchy of raw products
observed within the European FADN (table
2) remains in line with the hierarchy of na-
tional statistics on pig production28, ranking
differences exist for the Netherlands (overesti-
mation of 6%), France (overestimation of 4%)
and Spain (underestimation of 3%).

4.2. Factor analysis of estimated range distribu-
tions

Table 3 presents the main estimates of condi-
tional quantiles (lower decile D1, lower quar-
tile Q1, median Q2, upper quartile Q3, upper
decile D9) for pig, derived from quantile re-
gression and ordinary least squares regression
(OLS) for the specific costs of agricultural pro-
duction (accounting aggregate SE281 of the Eu-
ropean FADN) from a breakdown of the gross
product into fifteen aggregates (cf. III.1), for
the subset of 12 European countries selected
in 2006. Among the results that may be en-
countered in estimates of conditional specific
cost quantiles for pig (table 3), the estimated
gross product shares for pig from the standard
FACEPA model, cf. table A3.3 in Kleinhanß
et al. (2011), show consistent ranking: in fact,

24The analysis over the entire period is the subject of work in progress to adapt the quantile estimates approach to a
panel data structure.

25The results obtained simultaneously on the other productions are the subject of analyses in progress, conducted in
parallel.

26According to Focus on the Common Agricultural Policy, Eurostat 2012.
27Coefficient of correlation: r = 0.92.
28Coefficient of correlation r = 0.98.
29Austria was not included in the FACEPA report.
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Table 2: Pig, distribution of gross product by country, EU12.
Source: author’s processing, from EU-FADN 2006

Country Population D1 Q1 Median Q3 D9 Mean
Austria 29 040 64 126 506 33 031 81 340 24 698
Belgium 5 140 19 243 85 255 184 581 319 312 512 674 228 803
Denmark 6 950 5 544 65 231 213 944 506 288 902 508 354 530
France 13 370 1 620 41 845 123 884 271 555 450 627 194 908
Germany 52 980 1 341 11 946 51 488 135 958 230 833 91 407
Hungary 19 330 761 1 318 2 483 6 843 16 751 16 008
Italia 17 310 400 650 1 530 6 897 132 600 95 450
Netherlands 6 530 45 457 101 343 251 186 460 617 751 500 359 503
Poland 422 190 402 980 2 100 4 624 10 928 5 275
Spain 27 700 632 5 290 14 265 58 749 217 633 79 458
Sweden 3 100 3 209 13 388 54 656 173 638 319 639 124 786
United-
Kingdom

2 980 2 739 23 329 133 288 310 707 658 173 228 966

Total 56 180 606 610 368 1 088 10 765 77 316 35 625

in 11 EU Member States29, the first (Q1) and
second (Q2) conditional quartile estimators are
significantly correlated with the linearly con-
strained estimator of FACEPA (the levels are
close to the level reached by the OLS estima-
tor30).
The visualization of the specific cost estimates
is done on the graph in Figure 4, showing the
conditional quantile estimates in ascending
order for each country. For 2006, this graph of
the conditional quantile estimates of specific
pig costs by country identifies four types of
distributional scales. In the first type, we find
Italy (ITA) and Spain (ESP) having a similar
behaviour (high inter-quantile growth with an
inter- decile difference D1-D9 larger than € 400)
despite distinct locations (the minimum of the
differentials between respective quantiles is
larger than € 200); in the second type, Austria
(OST) opposes the previous model with an
inter-decile gap D1-D9 of 100 €; in the third
type, the United Kingdom presenting a distri-
butional scale with significant inter-quantile
growth (inter-decile gap D1-D9 larger than
€ 300); and in the fourth type, a subset of
countries with moderate inter-quantile growth
(inter- decile range of between € 200 and € 300).

The conditional median (Q2) estimated levels
are also a second criterion for distinguishing
between these different distributional scales
with two subsets: on the one hand, Italy (ITA)
and Austria (OST) with median estimates less
than € 450; on the other hand, all the other
countries whose conditional median estimates
are between € 500 and € 600.

Among the differences that can be identified
in 2006, let us first note the significant differ-
ence between two similar distributional scales
with heterogeneous slopes, Spain (ESP)31 and
Italy (ITA)32, Figure 4 confirming this separa-
tion of distributional scales for all conditional
quantiles. This is an illustration of the linear
model of conditional quantile with heteroge-
neous slope (cf. above § II.2.ii). Less easy to
identify, we secondly note the absence of over-
lapping distributional scales of Belgium (BEL),
Denmark (DAN) and Austria (OST) whose sep-
aration of confidence intervals can be seen on
Figure 4. Apart from certain differences in
precision for the estimation of the upper condi-
tional decile (D9) between Belgium and Austria
on the one hand, and Denmark on the other
hand, this illustrates the linear model of con-

30The rank correlation levels of Spearman are increasing from corr(SURE, D1) = 0, 62 to corr(SURE, D9) = 0, 69,
comparable to corr(SURE, MCO) = 0, 72.

31For which, the differences between extreme conditional quantiles overlap those between Comunitat Valenciana (Product
of Designated Origin - PDO Jamon de Teruel) at the highest costs and Extremadura at the lowest costs.

32Whose highest quantile estimates correspond to those recorded in Emilia-Romagna (PDO Prosciutto di Parma) or
Venetto (PDO Veneto Berico-Eugeano), which oppose the lowest quartile and decile estimates in Lombardia.
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Table 3: Pig, specific costs for 1,000 € of gross product, EU12.
Source: author’s processing, from EU-FADN 2006.

Country D1 Q1 Q2 Q3 D9 OLS
Austria [347.2 ; 369.2] [397.3 ; 409.1] [425.6 ; 447.4] [463.5 ; 485.3] [523.1 ; 562.5] [433.7 ; 442.1]
Belgium [539.9 ; 566.1] [561.2 ; 579.8] [591.5 ; 608.7] [642.7 ; 674.7] [684.6 ; 707.4] [630.9 ; 641.8]
Denmark [445.2 ; 458.6] [503.0 ; 515.4] [558.9 ; 570.9] [617.7 ;632.1] [654.7 ; 671.3] [535.2 ; 542.6]
France [470.9 ; 493.5] [509.9 ; 527.7] [547.9 ; 561.7] [577.6 ; 594.2] [610.8 ; 644.6] [541.6 ; 547.4]
Germany [444.3 ; 454.7] [475.6 ; 485.4] [514.8 ; 526.4] [567.7 ; 582.7] [593.4 ; 618.8] [493.6 ; 502.7]
Hungary [369.0 ; 451.8] [459.3 ; 568.1] [589.2 ; 662.2] [633.3 ; 681.5] [647.8 ; 737.0] [605.1 ; 620.7]
Italy [116.5 ; 170.1] [162.2 ; 245.2] [325.1 ; 386.5] [559.6 ; 633.0] [627.9 ; 718.3] [300.7 ; 307.8]
Netherlands [487.4 ; 506.2] [528.2 ; 550.4] [584.6 ;602.4] [639.9 ; 661.5] [676.0 ; 721.6] [573.2 ; 595.1]
Poland [471.3 ; 483.3] [541.8 ; 552.2] [603.0 ; 618.0] [655.1 ; 674.7] [704.5 ; 727.3] [641.7 ; 648.1]
Spain [191.5 ; 285.3] [369.8 ; 441.6] [552.3 ; 638.5] [743.8 ; 802.2] [824.6 ; 893.4] [449.9 ; 456.7]
Sweden [396.3 ; 443.9] [507.2 ; 533.1] [533.1 ; 578.1] [547.5 ; 619.5] [641.7 ; 722.9] [528.1 ; 543.2]
United-
Kingdom

[376.8 ; 559.2] [548.4 ; 596.0] [599.2 ; 629.6] [641.3 ; 712.9] [723.2 ; 805.4] [565.7 ; 588.4]

Numbers are presented in [Min ; Max] interval.
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Figure 4: Pig, estimation of conditional quantiles for 12 EU member states (2006).
Source: author’s processing, from EU-FADN 2006.
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Figure 5: Pig, quantile estimation interval SO-PCA, factorial plane F1xF2 of EU12 countries (2006).
Source: author’s processing, from EU-FADN 2006.

ditional quantile with homogeneous slope (cf.
above § II.2.i).

The SO-PCA interval estimates of conditional
quantiles allow to specify this distributional
structure. The first principal component F1
(Axis Dim1) representing 64% of the inertia, is
negatively correlated with the first conditional
quantiles (decile D1 and quartile Q1 highly
correlated). The second principal component
F2 (Axis Dim2), representing 35% of the in-
ertia, is positively correlated with the upper
decile (D9) and the third quartile (Q3). The
median Q2 is also correlated with the first two
major components. The SO-PCA F1xF2 first
factorial factor plane, representing 99% of the
country variability, makes it possible to iden-
tify two distinct groups of countries (Figure
5) differentiated according to the level of the
conditional estimate of the first quantiles (D1
and Q1): on the other hand, in F1> 0, Italy with
the first quantiles lower than 205 € and, on the
other hand in F1 <0, all the other countries for
which the first quantiles are larger than 235 €.
The second main component makes it possible
to distinguish three groups: on the one hand,

Austria in F2> 0 with the most homogeneous
quantile estimates situated between € 350 and €
430; on the other hand, Spain with the highest
estimates (from € 770 for Q3 to € 860 for D9);
and all other countries in the quadrant (F1 <0,
F2 <0) or close to it.
Thus, the SO-PCA identifies Austria’s cost
homogeneity model and distinguishes two
models of cost heterogeneity, one by lower cost
quantiles (D1 and Q1) for Italy, the second
by the higher costs (D9 and Q3) for Spain.
Finally, taking into account additional parame-
ters could make it possible to better separate
two putative subgroups: on the one hand, Den-
mark, France, Hungary and Sweden; on the
other hand, Germany, Belgium, Poland and
the United Kingdom.

Hierarchical descending clustering (DIV)33

allows the cost structure to be specified by
country class (Figure 6). First, there is a ma-
jor distinction in the location of distributional
scales: Austria (OST) is separated from other
countries by an upper quartile estimate Q3 < €
516.50; Italy stands out with a median estimate

33Unsupervised clustering algorithm on the MBMC confidence interval table at 95% quantile estimates (SODAS 2.5
software).
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Figure 6: Pig, specific costs for € 1,000 gross product, country clustering, EU12.
Source: author’s processing, from EU-FADN 2006.

Figure 7: Pig, location shift model (FRA-DEU/OST) versus location-scale shift model (ITA/ESP).
Source: author’s processing, from EU-FADN 2006.
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Q2 < € 429.75; Spain, Denmark and Sweden
are distinguished by an estimate of the first
quartile Q1 < € 491; the United Kingdom is
characterized by a higher decile estimate is
less than this value; on the other hand, among
these other countries, a supplementary dis-
tinction must be made between those whose
estimate of the last decile (D9) exceeds € 738;
Hungary is distinguished by an estimate of the
first decile (D1) less than € 442.25. The other
countries are divided into two sub-groups: on
the one hand, France and Germany are char-
acterized by an estimate of the upper quartile
(Q3) less than € 636; on the other hand, Bel-
gium, the Netherlands, and Poland, which are
distinguished by a quartile estimate (Q3) of
over € 636.

This descending hierarchy shows that the set
of quantile estimates is ordered by all of these
discriminant values, which implies keeping all
the parameters describing the distribution, and
possibly extending it with a finer quantile scale
allowing some of the national distributions to
be better distinguished.

5. Results discussion

The heterogeneity of national distributions of
specific costs covers the combined effect of dif-
ferent dispersal factors, including the economic
dimension of farms, that should be analyzed.
In fact, the studied European countries have
neither the same composition in terms of the
economic dimension of the farms, nor the
same thresholds to define a professional farm
holding. Thus, the heterogeneity of the quan-
tile estimates of specific costs within national
distributions, either in Italy or in Spain, proba-
bly covers those of very different production
structures both in their economic dimension
and in the production technology used.

Regionalised estimates make it possible to
specify national situations that are not ho-
mogeneous: the Spanish region Communitat
Valenciana is distinguished by the maximum

estimate of the median quantile of specific
costs; in contrast, the Spanish region of Ex-
tremadura and the Italian region of Venetto
are distinguished by the lowest overall levels
of quantile estimates, especially for the me-
dian quantile; the Spanish region Andalucia
and the Italian region Emilia-Romagna are
characterized by higher quantile estimates (Q3
and D9); the central Swedish region Skogs-
och mellanbygdslan, the central Hungarian
region Kozép-Magyarorszàg, the French re-
gion Basse-Normandie, and the German re-
gion Sachsen-Anhalt are associated with lower
quantile estimates (D1 and Q1) among the
highest.

It cannot be ruled out that the high values of
some estimates may in some cases come from
artifacts related to the estimation methodology
for countries where pig production correlates
with other production facilities on the farm.
Indeed, the size of the pig workshop compared
to the other workshops, according to the more
or less pronounced productive specialization
of the farms, can produce artifacts resulting
from the productive correlations at the level of
mixed technical-economic orientations to the
extent that the weight of the costs specifically
related to the other workshops would lead,
depending on the hierarchy of specific costs,
either to an underestimation bias for minority
pig workshops compared to other products
with a smaller production detour or conversely
to an overestimation bias for productions pre-
senting with the detour of more important
production such as pig production.

However, the existence of very high specific
costs may also signal the maintenance of
technically less efficient producers in less
favourable areas because of the existence
of comprehensive income support measures
(Barkaoui, Daniel and Butault, 2009), or even
agri-environmental measures specific to cer-
tain productive contexts, in particular those
aimed at maintaining agricultural production
in certain territories. On the other hand, the
lower estimates can point to either the presence
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of intensive farms that perform better techni-
cally, such as for pig producers in western
France, or the presence of productive systems
based on less demanding input and output
techniques as in piedmont and mountain areas.

6. Conclusions

On the basis of European FADN, we have
tested the feasibility of the micro-econometric
estimation methodology of the specific produc-
tion costs using the conditional quantiles, and
we have illustrated its relevance to take into
account the intrinsic heteroscedasticity of these
distributions for one of the major commodities
of the European market, the pig. The lessons
learned from these analyzes are relatively con-
sistent for the pig: the lower quantiles (D1
and Q1) and, respectively, the higher quantiles
(Q3 and D9) are the specific cost parameters
that can differentiate national productions ac-
cording to their cost distributions based on
observed regional differences.

The analysis of these estimates makes it possi-
ble to identify types of national distributions
of specific costs. The main producing countries
are located in a two-dimensional graph based
on a principal component analysis of the condi-
tional quantile interval estimates that provides
an exploratory test for the differences found
between national distribution scales according
to their respective conditional quantiles. Differ-
ences and similarities between countries are ex-
ploited using hierarchical top-down clustering
to produce country classes with comparable
costs. The differences between these groups
of countries are delimited by thresholds ex-
pressed according to the conditional quantiles
in terms of the gross product. These thresholds
can be used to segment farm populations to
analyze the differential effects of agricultural
policy measurement. These analyses therefore
allow to identify different models of distribu-
tional scale, notably that of the location shift
one opposite that of the location-scale shift one
(Figure 6).

We hypothesize that the differentiation of these
national distributions takes place on the one
hand between specialized and input-intensive
farms and, on the other hand, input-extensive
and/or multiproduct farms. We also consider
the perspective of pursuing and valuing the
conditional quantile estimation methodology
in the context of an input-output analysis of
European agriculture. The unit estimates given
in terms of the share of the specific costs in the
gross product that we have privileged in this
paper can be used in the context of the compu-
tation of standard gross margins, either at the
normative level to provide a statistical basis
for the estimation to feed the input-output
matrices of the particular agri-food sector to
a set of EU countries, or even certain groups
of European regions, to implement sensitivity
analyses for possible options of agricultural
policy through social and environmental ac-
counts matrices (Léon and Surry, 2009). In the
current context of the ’greening’ of the Pac, the
proposed national typology for the pig could
be applied to carry out simulations aimed at
exploring the relocation of pig production in
mountain areas or in intermediate regions.
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