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The data we analyze derives from the observation of numerous cells of the bacterium Escherichia
coli (E. coli) growing and dividing. Single cells grow and divide to give birth to two daughter
cells, that in turn grow and divide. Thus, a colony of cells from a single ancestor is structured as
a binary genealogical tree. At each node the measured data is the growth rate of the bacterium.
In this paper, we study two different data sets. One set corresponds to small complete trees,
whereas the other one corresponds to long specific sub-trees. Our aim is to compare both sets.
This paper is accessible to post graduate students and readers with advanced knowledge in
statistics.
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1. Introduction

In this paper, we study two different data sets
structured as binary genealogical trees. For the
statistician, this special structure is hard to take
into account rigorously because of the intricate
dependence structure within a tree. The data
sets come from two different biological experi-
ments. One set corresponds to small complete
trees, whereas the other one corresponds to
long specific sub-trees. Our aim is to compare
both sets, which is especially complicated as
they have very different tree structures.

The underlying biological problem concerns
the growth of the bacterium Escherichia coli (E.
coli). E. coli is a rod-shaped bacterium with con-
stant width and elongating length, hence its
length (or size) is representative of its biomass
or volume. Starting from size x at birth, the
bacterium size grows exponentially fast with
time at constant rate until its division. More
specifically, if T is the age of the bacterium
at division, there exists a constant τ, which
will be called the growth rate, such that the size
of the bacterium at time 0 ≤ t ≤ T equals
xeτt. E. coli reproduces by binary fission, the
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mother cell giving birth to two virtually iden-
tical daughter cells. Because of this mode of
reproduction, the observation of single cells
growing and dividing for several generations
produces data structured as binary genealogi-
cal trees. Single cells growth rate within such
a genealogical binary tree is the variable of in-
terest throughout this study.
From the statistical point of view, the main dif-
ficulty in treating such data is the dependence
structure as a (possibly incomplete) binary tree.
From the biological point of view, the main
questions of interest are the following. Do sis-
ter cells, that are genetically identical, have
the same growth rate? Is there a memory of
the growth rate between mother and daughter
cells? Does it also involve the grand-mother or
higher ancestors? How can it be modeled?
Although two sister cells are clones with iden-
tical genetic material, asymmetry in E. coli divi-
sion makes sense biologically. E. coli grows and
reproduces by dividing roughly at its middle.
Each cell has thus a new pole (created at the
division of its mother) and an old one (one of
the two original poles of its mother), see Figure
11 in Stewart et al. (2005). The cell that inherits
the old pole of its mother is called the old pole
cell, the other one is called the new pole cell.
It is suspected that both cells inherit different
material or material of different quality from
their mother cell. Therefore, each cell has a
type: old pole (O) or new pole (N) cell.
On experimental data, one usually does not
know the type of the original cell and its two
daughters at the root of the genealogy, but
from generation 2 on, the type of each cell is
known. For further generations, one can as-
sociate to one cell not only its type, but also
the sequence of types of its ancestors, see Fig-
ure 1. The original ancestor is labelled 1 and
the two daughters of cell n are labelled 2n for
the new pole one and 2n + 1 for the old pole
one. Therefore, even-labelled cells are type
N and odd-labelled cells are type O and the
whole sequence of types of their ancestors can
be retrieved from the decomposition of their

label in base 2 (with 0 coding for N and 1 cod-
ing for O). For instance, cell number 19 is type
NOO which means, it is type O, its mother is
type O and its grand-mother is type N.

Figure 1: Cell division binary tree with the
type of each cell

An interesting question is thus to find out
whether the respective growth rate of sis-
ter cells are statistically different or not, and
whether cells that have accumulated old poles

1Available at: http://journals.plos.org/plosbiology/article/figure/image?size=medium&id=info:doi/10.1371/journal.
pbio.0030045.g001

http://journals.plos.org/plosbiology/article/figure/image?size=medium&id=info:doi/10.1371/journal.pbio.0030045.g001
http://journals.plos.org/plosbiology/article/figure/image?size=medium&id=info:doi/10.1371/journal.pbio.0030045.g001
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along the divisions have a slower growth rate.
The starting point of the present work is that
the latter questions have seemingly opposite
answers in the biological literature: in Stewart
et al. (2005), the growth rate of older cells is
significantly slowed down, whereas in Wang
et al. (2012) it is stable. We provide the data
sets from both of these papers, and our aim is
to conduct a new statistical study of both data
sets to investigate the behavior of the growth
rate of E. coli and try to decide whether both
experiments yield contradictory results or not.
This paper is organized as follows. In Section 2,
we describe in details the two data sets from
Stewart et al. (2005) and Wang et al. (2012) and
explain which statistical investigations have
been conducted on each of them in papers from
the literature. In Section 3 we give the results of
the new statistical experiments we conducted
on these data sets. We present our conclusion
in Section 4.

2. Two tree-structured data sets

We first describe the data sets from Stewart
et al. (2005) and Wang et al. (2012) and relevant
literature.

2.1. Data set from Stewart et al.

The first data set comes from Stewart et al.
(2005). The authors followed the growth of
94 microcolonies of E. coli cells by video-
microscopy2. Each recording starts with a
single cell (randomly selected from previous
colonies) and stops after 7 to 9 generations of
new cells. From the images, they measured
the growth rate of 22732 cells in 101 (possi-
bly incomplete) genealogical binary trees as
shown in Figure 1. The type of each cell is also
known from generation 2 on, together with its
complete lineage.
In Stewart et al. (2005), the authors conclude
that "the old pole is a significant marker for mul-
tiple phenotypes associated with aging, namely,
decreased metabolic efficiency (reduced growth

rate), reduced offspring biomass production, and
an increased chance of death". They studied the
average genealogical tree and all pairs of sister
cells from generation 8 as if they were indepen-
dent. More rigorous statistical studies, taking
into account the dependencies induced by the
tree structure, have been conducted in Guyon
et al. (2005); Guyon (2007); de Saporta et al.
(2011, 2012, 2014). All those papers rely on the
assumption of a tree-adapted autoregressive
structure for the growth rate of daughter cells
as a function of that of their mother, called
Bifurcating Autoregressive model (BAR). All
conclude that the asymmetry between the
growth rate of sister cells is statistically signifi-
cant.
The data is provided in the file
data_stewart.txt. Each line corresponds
to a single cell. There are 22732 observed cells
in 101 trees (some films have multiple trees).
The recorded values are given in Table 1.

Table 1: Recorded data for data set
data_stewart.txt.

column data
1 tree number
2 cell number within tree
3 mother cell number
4 cell generation within tree
5 mother cell generation
6 cell growth rate
7 mother cell growth rate
8 no of consecutive old poles
9 no of consecutive new poles
10 no cons. old poles for mother cell
11 no cons. new poles for mother cell

Value −1 stands for not available. For instance,
line 100 reads

1. 103. 51. 6. 5. 0.0348970

0.0368848 3. 0. 2. 0.

which means cell 103 from tree 1 is in genera-
2For a sample film see: http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.

0030045.sv001

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.0030045.sv001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.0030045.sv001
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tion 6, it has a growth rate of 0.0348970. It is
an old pole cell and inherited 3 consecutive old
poles (type NNOOO). Its mother is labelled 51
(note that 103 = 2× 51+ 1), it belongs to gener-
ation 5 (5 = 6− 1), its growth rate is 0.0368848,
it is an old pole cell which inherited 2 consecu-
tive old poles (type NNOO). The growth rates
of tree 1 sorted by generation are presented in
Figure 2.
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Figure 2: Cell growth rates sorted by genera-
tion for Tree 1 in Stewart data set.

2.2. Data set from Wang et al.

The second data set is extracted from the richer
data set Wang et al. (2012). The authors filmed
and measured the growth and division of cells
trapped in a channel, ensuring that the old
pole daughter is always selected, see Figure 13

in Wang et al. (2012). Only the cell cumulating
successive old poles is observed, together with
its sister. It corresponds to the grey cell sub-
tree in Figure 1. Thus, the whole tree is not
observed, but the observations can go on for a
very large number of generations (up to 302).
Unlike in Stewart et al. (2005), the cumulated
old pole cells do not exhibit a reduced growth
rate but a steady state of growth. The authors
conclude that they have "shown a striking con-
stant growth rate of the mother cells of E. coli and

their immediate sister cells for hundreds of genera-
tions".
The distribution of the interdivision time of E.
coli has been studied using the data set from
Wang et al. (2012) in Doumic et al. (2015) and
Robert et al. (2014) using a piecewise deter-
ministic Markov process framework. In Robert
et al. (2014), the question is to determine which
factor triggers division: the age or the size
of the cell. It has been shown that the dis-
tribution of a bacterium life-time depending
solely on its age does not match experimental
data, while a distribution depending on size
does fit the data. In Doumic et al. (2015) non-
parametric statistical inference was also con-
ducted on the experimental data to estimate
the interdivision time distribution assuming
division is size-dependent.
To our best knowledge, this data set has not
been used yet to compare the growth rate of
sister cells.
The data provided in the file data_wang.txt.
Each line corresponds to a single cell. There
are 45255 observed cells in 224 channels. The
recorded values are given in Table 2.

Table 2: Recorded data for data set
data_wangt.txt.

column data
1 tree number
2 cell generation within tree
3 mother cell generation
4 cell growth rate
5 mother cell growth rate
6 No of consecutive old poles
7 No of consecutive new poles
8 No cons. old poles for mother cell
9 No cons. new poles for mother cell

We did not include the cell numbers in the
trees as they grow exponentially and can be
retrieved from the generation number and the
type. Value −1 stands for not available. For

3Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902570/figure/F1/. For a sample film, see: http:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2902570/bin/NIHMS203820-supplement-03.mp4

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902570/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902570/bin/NIHMS203820-supplement-03.mp4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902570/bin/NIHMS203820-supplement-03.mp4
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instance, line 100 reads

1. 50. 49. 0.0337894

0.0303264 0. 1. 49. 0.

which means cell number 251 − 2 from tree
1 is in generation 50, it has a growth rate of
0.0337894. It is a new pole cell. Its mother is
labelled 250 − 1, it belongs to generation 49, its
growth rate is 0.0303264, it is an old pole cell
which inherited 49 consecutive old poles. Note
that in this data sets, old pole cells have cumu-
lated at least, as many old poles as the rank
of their generation and new pole cells always
have an old pole cell mother. The growth rates
of tree 1 sorted by generation are presented in
Figure 3.
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Figure 3: Cell growth rates sorted by genera-
tion for Tree 1 in Wang data set.

2.3. Comparison of data sets

The main difficulty for analyzing these data
sets lies in the special dependence structure
coming from the genealogical trees. To take
this into account, one may use the BAR
model from Guyon et al. (2005); Guyon (2007);
de Saporta et al. (2011, 2012, 2014). Indeed, it
has been successfully applied to the first data
set. However, in the first set, one observes
(almost) complete short trees, whereas on the
second one, one observes very long comb-like

lineages. This structure does not fit into the ad-
missible observation framework of de Saporta
et al. (2011, 2012, 2014) because it involves a
critical Galton-Watson observation tree, where
individuals of type O always have 2 offspring,
and individuals of type N always have no off-
spring. More generally, as the observed trees in
both sets have a very different shape, one can-
not run the same statistical procedure on both
sets, making their comparison more intricate.
Last, but not least, as often with biological
data, both sets are very noisy. A qualitative
study may therefore be more informative than
a quantitative one.
The rest of this paper presents our new inves-
tigation of both data sets, the main aim being
to investigate asymmetry and decide whether
they lead contradictory conclusions or not.

3. New investigation of data sets

3.1. Preprocessing of raw data, Wang data set

The first difference between both data sets is
that for Stewart’s data, we directly received the
growth rate of each cell, whereas for Wang’s
data, we had access to raw data of cell lengths
along time and explained and computed the
growth rates from an exponential regression,
as presented in the introduction. When the
whole life of the cell from birth to division is
not observed (typically for the first and last
cells in a given channel), the computation is
impossible, thus we attributed the value −1.
We did the same when some recorded length
are negative. Otherwise, we provide the raw re-
sults, including possibly negative growth rates.
We first tried to work on the raw growth rates
but we have quickly realized that there were
too many aberrant data. Thus we developed a
preprocessing based of the following observa-
tions, see Figure 4:

1. some trees are globally aberrant (b),

2. some trees are globally good with a
chaotic ending probably due to filamen-
tation (c,d),
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3. some trees are globally good with a few
aberrant measures of growth rates (a).

This led us to remove aberrant trees and to
mark cells with an outlying growth rate as
aberrant (growth rate value set to −1). It ap-
pears that filamenting cells are automatically
marked as aberrant by this procedure. Here is
our detailed procedure.

Steps for preprocessing Wang data

1. Remove trees smaller that 20 generations.

2. Remove aberrant trees on a criterion
based on a comparison between the dis-
tribution of growth rates within this tree
and the global distribution of growth rate
for the whole data set:

(a) compute robust estimates for mean
m and variability σ of growth rates
over all remaining trees, using R
functions mean(.,trim=.05) and
mad(.);

(b) for each tree, compute its mean
growth rate mt (usual mean), and
remove the tree if |mt −m| > σ.

3. For each remaining tree:

(a) compute the median growth rate of
old pole cells, mO and of new pole
cell, mN ;

(b) mark each old pole cell whose
growth rate is outside [mO − 3 ∗
σ, mO + 3 ∗ σ] as outlier;

(c) mark each new pole cell whose
growth rate is outside [mN − 3 ∗
σ, mN + 3 ∗ σ] as outlier.

3.2. BAR model

Our first idea to compare both sets was to fit a
BAR model to Wang’s data set, and compare
with de Saporta et al. (2014) where the BAR
model is fitted to Stewart’s data. It is especially
appealing as the BAR model can account for a
steady growth rate for the cumulative old pole
lineage in the long run.
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Figure 4: Growth rate (y-axis) vs generation
number (x-axis) of old pole cells, for four trees
from the Wang data set.

The first difficulty stems from the special comb-
like structure of Wang’s data trees. As ex-
plained in a previous section, it corresponds to
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critical Galton-Watson observation trees, thus
existing results from the literature cannot be
applied. However, one can readily use similar
ideas as in de Saporta et al. (2014) to propose
an estimator with good convergence properties
(that will not be detailed here).
Let Xj,k be the growth rate of cell number k in
tree number j, with the numeration explained
in the introduction and on Figure 1. The asym-
metric BAR model is an autoregressive model
defined as follows: Xj,1 is arbitrary and for
k ≥ 1, one has

Xj,2k = a0 + b0Xj,k + ε j,2k,

Xj,2k+1 = a1 + b1Xj,k + ε j,2k+1,

where (ε j,k) is a noise sequence and θ =
(a0, b0, a1, b1) parameters to be estimated. In or-
der to take into account possibly missing data
(in our example, they will mostly correspond
to deleted aberrant values), we introduce the
observation process (δj,k) defined by δj,k = 1
if the growth rate of cell k from tree number j
is available (i.e. not set at −1), δj,k = 0 other-
wise. The mean-squares estimator of θ, taking
into account all the data from the m trees up to
generation n is given by

θ̂n =


â0,n

b̂0,n
â1,n
b̂1,n



= S−1
n

m

∑
j=1

n−1

∑
`=0


δj,2h`δj,h`Xj,2h`
δj,2h`δj,h`Xj,h`Xj,2h`
δj,2h`+1δj,h`Xj,2h`+1
δj,2h`+1δj,h`Xj,h`Xj,2h`+1


with h` = 2`+1 − 1 and where the normalizing
matrix is given by

Sn =

(
S0

n 0
0 S1

n

)
,

and for i ∈ {0, 1}

Si
n =

m

∑
j=1

n−1

∑
`=0

Si
j,`,

Si
j,` =

(
δj,2h`+iδj,h` δj,2h`+iδj,h`Xj,h`

δj,2h`+iδj,h`Xj,hl
δj,2h`+iδj,h`(Xj,h`)

2

)
.

Note that only the growth rate of cells from
the comb-like subtree are taken into account,
as they are the only available data in this case,
i.e. cells labelled 2n− 1 and 2n− 2 according to
the numeration described in the introduction.
It can be shown with similar techniques as in
de Saporta et al. (2014) that under mild assump-
tions on the noise and observation sequences,
this estimator is convergent and asymptotically
normally distributed. We obtain the estimation
results given in Table 3.

Table 3: Estimated parameters for the BAR
model, Wang data, n = 302, m = 224.

Estimation 95% confidence interval
â0,n 0.0304 [0.0200; 0.0410]
b̂0,n 0.0664 [−0.4652; 0.5980]
â1,n 0.0281 [0.0178; 0.0385]
b̂1,n 0.0994 [−0.3194; 0.5182]

The estimated variance of the noise sequence
is very high (about .5) compared to the mag-
nitude of the data, leading to wide confidence
intervals. In particular, as 0 belongs to the
confidence intervals of b̂0,n and b̂1,n (refer to
Table 3) one cannot assert that the autoregres-
sive structure is relevant, and we cannot rely
on this model to test the symmetry of old and
new pole cells.
How to deal with the high level of noise is
an important question for this data set. We
tried imputation methods for missing values
due to aberrant marking, but it appeared that
this introduced a strong bias in the tests. We
observed that the analysis was very sensitive
to the choice of the imputation method, thus
we gave up the idea and went on working with
uncorrected non aberrant data.

3.3. Memory from the mother and higher ances-
tors, Wang data set

For each tree, we selected the old cell branch
(upmost branch in Figure 1) and we fit an ad-
ditive regression model explaining the growth
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rate of a cell with the one of its mother and the
one of its grand mother

rn = βmmn + βggn + β0 + en (1)

where

• rn is the growth rate of the n-th gener-
ation cell (X2n+1−1 with previous nota-
tion),

• mn is the growth rate of its mother
(X2n−1),

• gn is the growth rate of its grand mother
(X2n−1−1)

• en the prediction error.

The triple (β0, βm, βg) depends on the tree. The
R command is lm(rate∼ratemo+rategdmo).
Histograms of p-values for the significance of
the mother coefficient βm (a) and for the grand
mother coefficient βg (b) are plotted in Figure 5.
See reference Murdoch et al. (2008) for the in-
terpretation of histograms of p-value.
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Figure 5: Histogram of p-value for significance
of the mother coefficient βm (a) and for the
grand mother coefficient βg (b), Wang data set.

We conclude that the effect of the grand mother
is not significant. The coefficient βm is signifi-
cantly positive with a value around 0.3.

3.4. Comparison of old pole and new pole statis-
tics, both sets

As it is not possible to compare the BAR model
for both data sets, we turned to more basic
tools to compare the influence of the mother
and higher ancestors on the growth rate of a
given cell. Here again, as both data sets do not
have the same structure, one cannot run the
exact same experiments on both sets. Recall
that asymmetry is already proved rigorously
for Stewart’s data.
The authors in Stewart et al. (2005) averaged
and normalized the growth rate data within
each generation and each tree (combined with
another indicator of distance to the edge of the
microcolony) to obtain their Figure 34 show-
ing a linear increase (respectively decrease)
for the mean normalized growth rate of cells
with cumulated consecutive new poles (respec-
tively cumulated consecutive old poles). Al-
though the lower generations contain signif-
icantly fewer individuals than higher gener-
ations and cells with an identical number of
cumulated old/new poles can exist within the
same genealogical tree, we used the same ap-
proach to try to find out how many new poles
it requires to obtain a rejuvenated cell (with
respect to its growth rate).
We averaged the growth rates of cells within
the same generation of the same tree (irrespec-
tively of the edge distance), and normalized
the growth rate of each cell with the corre-
sponding average. Then we computed the
mean growth rate over all normalized cells that
have cumulated n new poles or n old poles (for
1 ≤ n ≤ 7).
The results are given on Figure 6 (a), circles
correspond to cumulated new-pole cells and
stars to cumulated old-pole cells. This figure
corresponds to Figure 3 in Stewart et al. (2005).
Then we compared the mean of all new-pole

4Available at http://journals.plos.org/plosbiology/article/figure/image?size=large&id=info:doi/10.1371/journal.pbio.
0030045.g003

http://journals.plos.org/plosbiology/article/figure/image?size=large&id=info:doi/10.1371/journal.pbio.0030045.g003
http://journals.plos.org/plosbiology/article/figure/image?size=large&id=info:doi/10.1371/journal.pbio.0030045.g003
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cells which mother cumulated n old poles, and
old-pole cells which mother cumulated n new
poles (for 1 ≤ n ≤ 6), see Figure 6 (b), circles
correspond to new-pole cells with cumulated
old-pole mother and stars to old-pole cells with
cumulated new-pole mother. The scales of both
figures are the same to make visual comparison
easier. The linear regression slope coefficients
are respectively 4.4% for the new pole cells and
−1.1% for the old pole ones in Figure 6 (a),
0.1% for the new pole cells and −0.5% for the
old pole ones in Figure 6 (b).
One can conclude that one new pole is enough
to forget an accumulation of old poles and sim-
ilarly one old pole is enough to forget an accu-
mulation of new poles.
As regards Wang’s data, we compared the
mean growth rate of new pole and old pole
cells as well as mother-daughter correlation.
More specifically, we found out the following.

1. Student test for comparison of the mean
of the growth rate of old pole cells and of
new pole cells yields a p-value < 10−16,
and 1% confidence intervals for mean
growth rates are: [0.0309, 0.0310] for old
pole cells and [0.0319, 0.0320] for new
pole cells.

2. Regarding the daughter mother correla-
tion, we have computed one confidence
interval for the overall correlation be-
tween the growth rate of old pole daugh-
ters and their mothers’, and another one
for new pole daughters and their moth-
ers’: 1% confidence intervals for correla-
tion between growth rates of new pole
daughters and that of their mother is
[0.085, 0.123], the same for old pole cells
is [0.125, 0.160].

A significant difference thus holds for the mean
as well as for the correlation with the mother
cell for old pole and new pole sister cells.
We have also plotted, in Figure 7, a histogram
of regression coefficients (w.r.t. mother’s
growth rate) in both cases, corresponding to
coefficients βm in Equation (1) with βg set to 0.
The difference in not clear, but it seems that in
the case of old poles, the dispersion is smaller.

3.5. Stationarity, both sets

We then investigated the stationarity of the
growth rate in the data.
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Figure 6: Mean normalized growth rate within
generations and trees for cells that have cumu-
lated (a) n consecutive new poles (circles) or n
consecutive old poles (stars) for 1 ≤ n ≤ 7; (b)
1 new pole after n consecutive old poles (cir-
cles), 1 old pole after n consecutive new poles
(stars), for 1 ≤ n ≤ 6, Stewart data set.

The two datasets correspond to different ex-
perimental procedures, therefore creating po-
tential differences in the initial physiological
state of the cellls. In Stewart et al. (2005), the
initial cells were picked at random from a pop-
ulation growing in a liquid medium and then
plated on a solid medium, where it grew and
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divided to form microcolonies. The cells un-
dergo a plating stress when placed on the solid
medium, which is well known by biologists,
see e.g. Rolfe et al. (2012) and Cuny et al.
(2007). This leads to a transient phase of re-
duced growth rates in the first generations, see
Figures 8 and 9.
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Figure 7: Histogram of regression coefficients
βm, for new poles cells (a) and for old poles
cells (b), Wang data set.
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Figure 8: Box plots of growth rates for cells in
generations 2 to 8, Stewart data set.

In Wang et al. (2012), on the contrary, the first
generations of cells were removed, so that only
a steady state is observed, see Figure 10 which

is the counterpart of Figure 8 and presents box-
plots of the growth rates of cells for Wang’s
data for generations 2, 3, 4, 5, 10, 20, 30, 40, 50,
100 and 200.
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(a) Generation 2
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(b) Generation 5
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(c) Generation 8

Figure 9: Histogram of growth rates for cells
in generations 2 (a), 5 (b) and 8 (c), Stewart
data set.
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For Wang’s data set, one can be a bit more pre-
cise regarding stationarity for the cumulated
old pole lineage. We implemented the follow-
ing procedure (on old pole cells only):
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Figure 10: Box plots of growth rates for cells
in generations 2, 3, 4, 5, 10, 20, 30, 40, 50, 100
and 200, Wang data set. Outliers (growth rate
negative or larger than 0.08) are excluded for
clarity.

1. For each tree

(a) The residuals of an ARMA(1,1)
model are computed.

(b) These residuals are split first half /
second half

(c) A Kolmogorov test (R command
ks.test) is used for comparison of
distributions of the subseries.

2. We plot in Figure 11 an histogram of the
p-values.
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Figure 11: P-values for the Kolmogorov test of
stationarity, Wang data set.

Lets us explain our motivation for the first step.
In order to use the right threshold in the Kol-

mogorov test, we need in theory the data to
be independent. Assuming that the growth
rate is an AR(1) process, and that the data are
noisy observations of the growth rate, we get
indeed an ARMA(1,1) process. Steps 2 and
3 are standard. Concerning step 4, under H0
(stationarity), the p-values are uniformly dis-
tributed, and else, they are more concentrated
around 0.
We see on Figure 11 a uniform distribution
of the p-values, which is characteristic of the
non-significance of the hypothesis of different
distributions. We obtain the same conclusion if
we replace the Kolmogorov test with a Student
test (change ks.test into t.test).

4. Conclusion

In these two data sets we made efforts to take
into account the tree structure of the data. We
tried different statistical procedures that can be
summed up as follows.

Wang data. Because of the simple structure
of this data set, each tree is here just the grey
subtree in Figure 1. We have tried dynamical
models in which the growth rate of a cell may
have a multi-generation memory, with coeffi-
cients possibly dependent on the tree (mixed
effects). We did not find a significant improve-
ment over the simplest model where the rate
of a cell depends only on the one of its mother,
and that of the grand mother has no significant
influence. We found that

1. the old pole cell growth rate is signifi-
cantly more correlated to its mother than
the new pole cell growth rate;

2. the mean old pole cell growth rate is
significantly smaller than the mean new
pole cell growth rate;

3. the stationarity cannot be rejected.
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Stewart data. The tree structure induces de-
pendency in the data which we have take into
account in our testing procedures. It is estab-
lished in the literature that old pole and new
pole cells have significantly different growth
rates on this data set. In addition, we found
the following.

1. There is no stationarity of the growth rate
across generations. This means that the
initial stress of the experiment has not
the time to vanish during only the first 9
generations.

2. The most relevant factor is the the num-
ber of generations since the last change
of pole type, and not the whole sequence
of types along the lineage of a given cell.
For example, cell 17 (NNO) in figure 1
has a similar growth rate as cells 21 and
29 (ONO), or NONOONN (300, 428) as
NNONN (68, 100).

To conclude, in both data sets, we recover a
statistically significant difference between the
growth rate of sister cells. Therefore, asymme-
try is present in the division of the E. coli, even
after hundreds of generations.
The apparent conflict between both data sets
may simply come from observations at differ-
ent phases: Stewart’s data are still in a tran-
sient phase whereas Wang’s data are stationary.
From this point of view, the two data sets are
not contradictory. To our best knowledge, there
is no available data set of E. coli division with
both transient and steady states. It would be
interesting to design an experiment where both
the transient and the stationary phase could be
observed on the same colonies.
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