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Covered charges (Charges) and Medicare reimbursements (Payments) for various diagnoses
were recently made available on the Web. This paper provides an analysis of the relationship
between these two variables. In addition, we investigate the conformity of the variables to
Benford’s Law and its generalizations which are a set of rules that describe the distribution of
digits in numbers for many types of data sets. Benford’s Law is often used to help detect data
that are fraudulently created. We also investigate whether adding a subset of randomized values
will alter its distribution of digits as analyzed through various Benford tests.
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1. Introduction

The Centers for Medicare and Medicaid Ser-
vices (CMS) have recently made datasets pub-
licly available for analysis and research. The
dataset that is utilized in this paper is “Medi-
care Provider Charge Data: Inpatient” (Cen-
ters for Medicare and Medicaid Services, 2013).
Our goal in this research, which is an exten-
sion of an earlier paper (Quinn et al., 2014),
is to analyze two specific variables within
this dataset. These two variables are Average

Covered Charges (Charges) and Average Total
Payments (Payments). More specifically, the
charges consisted of “hospital-specific charges
for the more than 3,000 U.S. hospitals that re-
ceive Medicare Inpatient Prospective Payment
System (IPPS) payments for the top 100 most
frequently billed discharges, paid under Medi-
care based on a rate per discharge using the
Medicare Severity Diagnosis Related Group
(MS-DRG) for Fiscal Year (FY) 2011. These
DRGs represent almost 7 million discharges or
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60 percent of total Medicare IPPS discharges.
Hospitals determine what they will charge for
items and services provided to patients and
these charges are the amount the hospital bills
for an item or service.” Meanwhile, the pay-
ments are the “average of Medicare payments
to the provider for the DRG including the DRG
amount, teaching, disproportionate share, cap-
ital, and outlier payments for all cases. Also
included in Total Payments are co-payment
and deductible amounts that the patient is re-
sponsible for and payments by third parties for
coordination of benefits.” There are 163,065
observations for each variable.

The initial phase of the research is to perform a
data analysis of the variables Charges and Pay-
ments, and then to investigate the relationship
of these two variables with respect to multi-
ple other variables in the dataset, such as ge-
ographic region (State, City), diagnosis (DRG)
and provider centers (Providers). Next, we
consider the distributions of the two principal
variables with respect to Benford’s Law, a set
of rules that apply to a variety of data and
are often used to confirm the authenticity of
the values. The final portion of the research
is to investigate the potential impact of miss-
ing data and how it affects the conformance to
Benford’s Law.

2. Data

The data are represented below by two dotplots
(Figures 1 and 2). These graphs were generated
using Minitab Software (Minitab Inc, 2010).
The distributions of the variables Charges and
Payments are both positively skewed, but more
skewed for Charges, which can be observed in
these two graphs. There are also two frequency
tables (Tables 1 and 2), one for Charges and
one for Payments, to provide the counts rep-
resented by the dotplots. The class intervals
are different between the two tables since in
general, the payments are much smaller than
the charges.

Table 1: Frequency Distribution for the
Charges.

Dollar Range Charges
0-99999 155152
100000-199999 6795
200000-299999 863
300000-399999 185
400000-499999 40
500000-599999 24
600000-699999 4
700000-799999 0
800000-899999 0
900000-999999 2

| Total 163065

Table 2: Frequency Distribution for the Pay-

ments.
Dollar Range Payments
0-9999 112164
10000-19999 39130
20000-29999 6521
30000-39999 3232
40000-49999 1239
50000-59999 458
60000-69999 200
70000-79999 72
80000-89999 29
90000-99999 11
at least 100000 9

| Total 163065

As expected, Charges, with a mean value of
$36,134 (s.d. = $35,065), has a much higher
average than Payments with a mean of $9,707
(s.d. = $7,665). The magnitude of the mean
difference between the two variables was a lit-
tle surprising, though it was expected that in
general Medicare reimbursements would only
cover a portion of the provider charges. In
fact, the minimum value of Charges is $2,459
and the maximum is $929,119 whereas the vari-
able Payments had a minimum of $2,673 and a
maximum of only $156,158.
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Dotplot of average covered charges
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Each symbol represents up to 2023 observations.

Figure 1: Dotplot of Charges.

Dotplot of average total payments
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Each symbol represents up to 2043 observations.

Figure 2: Dotplot of Payments.
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To analyze the linear relationship between
Charges and Payments, scatter plots and regres-
sions were run using (Tableau Software, 2014).
The results for the regressions for the Sum of
Charges and the Sum of Payments which were
aggregated by DRGs, State, City, and Provider
are shown in Figures 3 through 6 below.

The relationship between Charges and Pay-
ments is examined further by first summing
the values for each variable by every DRG and
running a linear regression on the aggregated
variables. The graph in Figure 3 indicates that
when one regresses the Sum of the Average
Total Payments by the Sum of the Average Cov-
ered Charges, a very strong linear relationship
exists (R2:0.988, b = .279; p<.0001). Based on
this model, for each additional $1,000,000 in
charges, approximately $279,000 is reimbursed
by Medicare payments for every DRG speci-
fied.

When the same variables (Sum of Average
Covered Charges and Sum of Average Total
Payments) are plotted for each state rather
than each DRG, the linear relationship still
exists but is not as strong (R*= 0.809298, b
= 0.2330, p<0.0001). Unlike the case for the
DRGs, this graph reveals some interesting out-
liers, at either extreme of almost total reim-
bursement and of very low reimbursement.
For example, Maryland (MD) has Charges of
44.5M and 42.0M of Payments which trans-
lates into a 94.4% reimbursement. Similarly,
though not quite as good, Massachusetts (MA)
has Charges of approximately 78.9M and re-
ceives Payments of 39.5M for 50.1% reimburse-
ment. Conversely, Nevada (NV) has Charges
of 73.4M but Payments of only 12.4M which is
a 16.9% reimbursement. Likewise, New Jersey
(NJ) has a similar ratio of roughly Charges of
319.1M and Payments of 51.5M (16.1% reim-
bursement).

At a more disaggregated level, a regression
model was run for the same variables by each
city. The results were very similar to the model
based on each state (R2= 0.821641, b = 0.2395,
p<0.0001). Not unexpectedly, since Maryland
fared well in the previous model, Baltimore
did extremely well here with Charges of 16.7M

and Payments of 15.7M or 94.0% reimburse-
ment. Likewise, since Nevada had very small
proportional payments, Las Vegas did poorly
with Charges of 49.2M but payments of only
7.4M or 15% reimbursement.

At the most basic level available, a regression
model was run for the Charges and Payments
based on each individual hospital /medical cen-
ter provider. In this case, the model was not as
good a fit as the earlier models (R? = 0.707331,
b = 0.1868, p < 0.0001). This would be ex-
pected since the data are more variable since
they are disaggregated. As a result, there are
many points that are far from the estimated
line, when compared to the previous models.
As before, some of these points represent cases
where the charges are almost fully reimbursed,
(e.g., UMD Medical Center, with Charges of
1.89M and Payments of 1.78M or 94.2% reim-
bursement and Johns Hopkins Hospital, with
Charges of 2.3M and Payments of 2.1M or
94.3% reimbursement) while others indicate
situations where a very small proportion of the
charges are paid (e.g., Crozer Chester Medical
Center with Charges of 13.3M and Payments
of 1.1M or 8.3% reimbursement, and Bayonne
Hospital Center with Charges of 8.85 M and
Payments of 600 thousand or only 6.8% reim-
bursement). In fact, this issue of high charges
has been previously alluded to by (Herman,
2013)

"The results relate back to May, when HHS
and CMS released a trove of data on hospital
inpatient charges. The data showed charges
vary wildly across the country at different hos-
pitals for the same procedure. For example, at
Upper Chesapeake Medical Center in Bel Air,
Md., the average Medicare charges for a ma-
jor joint replacement with major complications
and comorbidities totaled a little more than
$23,000. At Crozer Chester Medical Center
in Upland, Pa., a roughly hour-drive east, the
average charges for the same procedure cost
almost $322,000. However, hospital and health
system executives have argued the charges do
not reflect what they are actually reimbursed,
although the OIG’s report paints a much dif-
ferent picture."
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Figure 3: Scatter Plot of Payments by Charges Aggregated by DRGs.
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Figure 4: Scatter Plot of Payments by Charges Aggregated by State.
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Figure 5: Scatter Plot of Payments by Charges Aggregated by City.
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Figure 6: Scatter Plot of Payments by Charges Aggregated by Provider.



-25- Medicare charges and payments / |. Quinn, P. Schumacher & A. Olinsky

3. Benford’s law background

Benford’s Law describes the non-uniform dis-
tribution of digits in data values that many
types of processes generate, such as financial
data, values from some naturally occurring
events and numbers that are produced which
span several orders of magnitude. It is often
used to help detect fraud in forensic account-
ing, health insurance and various other fields
where data are expected to follow Benford’s
Law (Durtschi et al., 2004; Lu and Boritz, 2005;
Maher and Akers, 2002; Nigrini, 2012, 2014).
If deviations from the Law exist, then the im-
plication is that the data might be fraudulent
or artificially generated, as opposed to being a
result of an open, ordinary process.

This interesting distribution of the digits 0 to
9 was first discovered in 1881 by an American
astronomer, Simon Newcomb, who observed,
“That the ten digits do not occur with equal
frequency must be evident to any one making
much use of logarithmic tables, and noticing
how much faster the first pages wear out than
the last ones.” (Newcomb, 1881, p.39). These
would be the pages where the numbers began
with the digit 1. It was rediscovered in 1938 by
Frank Benford, a physicist, who investigated
the distribution of digits for various sets of sci-
entific data and other types of values: “It has
been observed that the first pages of a table
of common logarithms show more wear than
do the last pages, indicating that more used
numbers begin with the digit 1 than with the
digit 9. A compilation of some 20,000 first dig-
its taken from widely divergent sources shows
that there is a logarithmic distribution of first
digits when the numbers are composed of four
or more digits.” (Benford, 1938).

Mark Nigrini also studied the distributions of
the digits. In his studies of Benford’s Law, he
provides formulas for obtaining the probabil-
ity distributions of the digits, and discusses
several tests for whether or not a data set fol-
lows the distributions suggested by Benford’s
Law. Nigrini divides the tests into the Primary
Tests and the Advanced Tests. The Primary
Tests include the distribution of the first digits,

the second digits and the first-two digits (also
known as the first-order test). The Advanced
tests include the second-order test and the
summation test. The second-order test consid-
ers the distribution of the first-two digits of
the differences between consecutive numbers
in the data set when it is sorted in ascending
order. In the summation test, the sum of all
the values beginning with each of the first-two
digits (10, 11, ..., 98, 99) is divided by the
grand sum of all the values in the data set, and
each fraction (of the total sum) is compared to
the theoretical Benford proportions. We give
the formulas for the primary tests below:

First Digit probabilities:

P(Dl = dl) = loglo (1 + le)
where dy € {1, 2, ..., 9}

Second Digit probabilities:

P (D =dy) = L3 _; logyg (1 + ﬁdz)
where dy € {1, 2, ..., 9}

First-Two Digits probabilities:
P(D1D2 = dle) = loglo (1 + ﬁdz)
where dyd, € {10, 11, ..., 99}

These formulas are used to obtain the propor-
tion of times a given digit appears in a given
position. For example, the estimated probabil-
ity or frequency of a number beginning with

the digit 1 is:
1
log, (1 + 1)

= logy, (2)
o 0.30103.

These calculations for the probabilities or fre-
quency distributions of the digits can be rep-
resented in tabular form. Calculations for the
probabilities of the digits 0 to 9 as they should
appear in the first, second and third places of
data which are expected to follow Benford’s
Law, are provided below in Table 3 (Nigrini,
2011, 2012).
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Two observations can be made about these
distributions, which are presented for the first
three digit positions in Table 3. We note first
that in all places, as the value of the digit
increases, they occur with decreasing probabil-
ities. However, the lower the order of the digit
(for example, the third place digit or fourth
place digit), the more uniform the distribution
becomes.

Table 3: Proportions for the First, Second and
Third Positions of Digits in Numbers from Ben-
ford’s Law.

Digit Position in Number

Digit First Second Third
0 11968 10178
1 .30103 11389 .10138
2 17609 .10882 .10097
3 12494 .10433 .10057
4 09691 .10031 .10018
5 07918 09668 .09979
6 06695 .09337 .09940
7 .05799 .09035 .09902
8 .05115 .08757 09864
9 .04576 .08500 .09827

A common problem in data analysis is that
there are missing values in many data sets.
This can be due to a variety of reasons, based
on the nature of the study. It could be inten-
tional, such as the case with census data, where
participants might refuse to divulge informa-
tion that they consider sensitive, or with certain
college admissions data, like SAT and ACT
scores, which might not be provided to schools
if they are score-optional institutions. The data
could also be missing because of unforeseen
circumstances, as when instruments fail, like
an anemometer measuring wind speed at a
weather station. No matter what the reasons
for the missing data, a decision has to be made
to either leave the records out of the analysis
or to use an imputation method to fill in the
gaps. In one approach to dealing with missing
data when applying Benford’s Law, Lu and
Boritz provide an algorithm which offers a

modified set of Benford frequencies which take
into account the fact that there are missing
values (Lu and Boritz, 2005).

It was thought that the average covered
charges, which are the hospital bills, might
follow Benford’s law. On the other hand, since
the payments by Medicare follow a schedule,
with specific limits, we suspected that these
average payments would not likely follow Ben-
ford’s law.

4. Benford’s law methodology

Our intention in this part of the paper is to in-
vestigate what happens when missing data are
replaced by imputed values. More specifically,
we are interested if replacing missing data by
imputed values alters the relationship of a data
set to Benford’s Law. This is important for data
sets that follow Benford’s Law as well as for
those that do not. If there is a large percent-
age of missing data that is replaced by these
imputed values, does it alter the distribution
of digits so that it no longer follows Benford’s
Law? Changes in relationship to Benford’s
Law might inadvertently lead to allegations
that non-fraudulent data are fraudulent and
vice-versa.

To investigate how imputation affects the dis-
tribution of data, we will use two variables,
Charges and Payments, defined earlier. We
will show that one, Charges, basically follows
Benford’s Law while the other, Payments, does
not. We will remove 20% of the observations
in both variables at random and replace these
missing values using two types of imputation.
We chose to make 20% of the data to be missing
since that generally represents a substantial
part of the data set. Saunders et al. (2006) refer-
ence studies where a small amount of missing
data could be considered 5% or less, or even
20% or less. While Acuna and Rodriguez (2004,
pg 1.) state:
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Missing data is a common problem in statistical
analysis. Rates of less than 1% missing data are
generally considered trivial, 1-5% manageable.
However, 5-15% require sophisticated methods
to handle, and more than 15% may severely
impact any kind of interpretation.

To start, we will use the most common imputa-
tion method of replacing missing values with
the mean. Then we will also impute missing
values with uniform random numbers since it
is possible that those fraudulently generating
numbers would do so by randomizing the en-
tries. This is reinforced by (Chang, 2013, pg.
13):

Benford’s Law has been used in fraud detec-
tion. As early as 1972, Hal Varian suggested
that the law could be used to detect possible
fraud in lists of socio-economic data submitted
in support of public planning decisions. Based
on the plausible assumption that people who
make up figures tend to distribute their digits
fairly uniformly, a simple comparison of first-
digit frequency distribution from the data with
the expected distribution from Benford’s law
ought to highlight any anomalous results.

Then we will test the modified data sets to see
how they conform to the distribution of dig-
its specified by Benford’s Law. We will utilize
Microsoft Excel to perform our analysis (Mi-
crosoft, 2010). SAS™ has also been used to
test whether data follow Benford’s Law (Smith,
2002). However, Excel is very easy to imple-
ment, particularly when used in conjunction
with a template developed by Nigrini (2014).
Finally, we will present our results graphically.

5. Results

Dotplots and frequency tables were provided
earlier which illustrated the skewness of both
the charges and the payments. A third fre-
quency table is provided below, for these two
variables, which is more disaggregated than
the previous tables and contains unequal class
widths. These intervals are chosen in order to
facilitate the examination of the first digit of
the dollar values so that they can help illustrate

the level of conformity of the charges and the
payments to Benford’s Law.

Table 4: Frequency Table of Charges and Pay-
ments for illustrating the first digit.

Dollar Range Charges Payments
2000-2999 8 192
3000-3999 49 10655
4000-4999 280 24675
5000-5999 695 22074
6000-6999 1347 20259
7000-7999 2127 14617
8000-8999 2771 10940
9000-9999 3687 8752
10000-19999 49936 39130
20000-29999 35016 6521
30000-39999 21278 3232
40000-49999 13577 1239
50000-59999 8891 458
60000-69999 5976 200
70000-79999 4240 72
80000-89999 3017 29
90000-99999 2257 11
100000-199999 6795 9
200000-299999 863 0
300000-399999 185 0
400000-499999 40 0
500000-599999 24 0
600000-699999 4 0
700000-799999 0 0
800000-899999 0 0
900000-999999 2 0

’ Total 163065 163065

Having examined the data, we now test
whether our expectations of Charges basically
fitting Benford’s Law and Payments not fitting
are justified. The plots presented below were
obtained using Nigrini’s Excel template (2014).
We have included graphs for the first digit test,
the first-two digits test and the second-order
test for Charges (Figures 7 to 9), and Payments
(Figures 10 to 12).
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With reference to the first digit test (Figure 7)
and first-two digits test (Figure 8), it seems
to be true that the Charges do in fact follow
Benford’s Law fairly closely. The Payments,
however, do not appear to follow Benford’s
Law. For both the first digit test (Figure 10)
and the first-two digits test (Figure 11) for
the Payments, there is clearly a dip around
the 2-3 or 20-30 digits. This coincides with
our expectation since Payments are structured
around the DRG procedures, with specified
payment limits and thus are not expected to
follow Benford’s Law. Also, this decrease in
payments beginning with a first digit of 2 or
3, can be seen in Table 4 where the number of
payments from $2000 to $2999 (192) and from
$3000 to $3999 (10655) are much smaller than
in the ensuing payment intervals, like $4000
to $4999 (24675) and $5000 to $5999 (22074),
and so forth. We have not included the second
digits test or the summations test for any of the
scenarios since they weren’t very informative.

The second-order test, which is represented
in Figures 9 (Charges) and 12 (Payments),
analyzes the first-two digits of the numbers
resulting from taking the differences in suc-
cessive values when the data are sorted in
ascending order. For this test, both Charges
and Payments follow the predicted Benford
proportions pretty closely, which might be due
to the number of observations being so large.
Nigrini states, “Let x1, x2 ..., xy be a data set
comprising records drawn from a continuous
distribution, and let i1, ¥ ..., yn be the x;’s in
increasing order. Then, for many data sets, for
large N, the digits of the differences between
adjacent observations (y;;1- y;) is close to Ben-
ford’s Law.” (Nigrini, 2012).

For the mean imputation, we have only in-
cluded one plot (Figure 13) since it fully repre-
sents the distortion of the distribution caused
by replacing 20% of the missing values with
one constant.

As can be seen in Figure 13, mean imputation
clearly changes the distribution of the data for

the average charges. Therefore, it would no
longer satisfy Benford’s Law. The spike in the
plot at the mean is very evident and appears
in the plots for all scenarios for both Charges
and Payments.

The same three tests were then run with Uni-
form Random Imputation for Charges (Figures
14 to 16) and Payments (Figures 17 to 19).
There were some interesting results when the
random uniform imputation was applied to
the Charges data set. For example, though the
original Charges data were a fairly good fit for
Benford’s for the first digit and first-two digits
tests (Figures 7 and 8), there were generally
slightly higher proportions of the lower digits
and lower proportions of the higher digits than
Benford’s expected fractions. When 20% of
the values were replaced by random uniform
values, the first digits and first-two digits be-
came more spread out which adjusted these
fractions of the digits, so that the imputed
data set looks like a better fit (Figures 14 and
15) than the original. In other words, if we
were to consider the first digits and first-two
digits, we could be fooled if the imputed data
were actually fraudulent. However, this is not
the case with the second-order test. In this
instance, the first-two digits for the original set
(Figure 9) follow the expected theoretical Ben-
ford proportions very closely. The same test for
the imputed charges data set (Figure 16) also
generally follows the Benford proportions with
one important exception, there are prominent
spikes when the second digit is 0 (i.e., at 10, 20,
..., 90). This could be due to rounding of the
random uniform values. Nigrini points out, “A
pattern of spikes at the prime first-two digits
10, 20, ..., 90 will occur if these differences are
drawn from data from a discrete distribution.”
(Nigrini, 2012, p. 99).

For the original Payments data set, only the
second-order test indicated any similarity to
Benford’s (Figure 12) but that doesn’t neces-
sarily signify much. As alluded to above,
non-Benford sets, like many uniform density
distributions, can match Benford’s with the
second-order (differencing) test (Nigrini, 2012,
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Figure 13: Charges:

Figure 14: Charges:

Figure 15: Charges:
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Figure 16: Charges: Random Uniform Imputation Second-Order Test.

p- 99). With Payments being non-Benford, it
might have seemed that replacing 20% of the
data with uniform random values would have
spread out the data and made the set more
Benford-like (by helping fill the gap for the
lead digits of 2 and 3 mentioned above). How-
ever, the imputed first digit and first-two digits
tests (Figures 17 and 18) closely resemble the
corresponding graphs for the full Payments
(Figures 10 and 11). The imputed second-order
test (Figure 19) has similar spikes to what oc-
curred with the imputed Charges (Figure 16).

6. Conclusions

The analysis of the Medicare Charges and
Payments by DRG, State, City and Provider
resulted in several interesting conclusions.
Overall, Payments were approximately one
quarter of the Charges. This is not surprising
since in general, health insurance allows a
limited amount for specific medical services
and providers correspondingly charge consid-
erably more than they expect to be reimbursed.
This was closely observed in the plots and
regression model results of the Payments by
Charges aggregated by DRG. However, we
observed many outliers in the other models.
For instance, by State, Maryland was almost
fully reimbursed, MA was reimbursed by more
than 50%; whereas, New Jersey and Nevada

was reimbursed for about 1/6 of their covered
charges. When the data were examined by
City, it turns out that Baltimore had almost
100% reimbursement; whereas Los Vegas had
approximately 1/6 of the charges reimbursed.
These outliers can be further seen when dis-
aggregating the data by provider. Within
Baltimore Maryland, the provider that stands
out is Johns Hopkins Hospital with charges
of 2.26 million and payments of 2.13 million
or 94.3% reimbursement and the provider,
Bayonne Hospital Center, located in Bayonne,
New Jersey had charges of 8.85 million with
payments of only 600 thousand or only 6.8%.

After analyzing the data, we addressed the
question as to whether or not either of the two
main variables, Charges and Payments, satis-
fied Benford’s Law. There are five Benford tests
(three primary and two advanced). We have
included the results from three of these five
tests (First Digit, First-Two Digits and Second-
Order test). We determined that the variable
Hospital Medicare Average Covered Charges
(Charges) is approximately a Benford Set while
the Hospital Medicare Average Total Payments
(Payments) variable is not. We then investi-
gated what happens if 20% of the observations
are replaced with imputed values, to decide
whether it significantly affected the distribu-
tion of digits. One common method of im-
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putation is to use the mean value of the data.
This resulted in an expected spike in the First
Digit test since we were replacing 20% of the
data with one constant. We didn’t proceed
any further with that analysis. We then tried
a different imputation method, in which we
replaced 20% of the observations with uniform
random values, with the idea that people tend
to randomize numbers when asked to make
up values. The results were mixed in that the
Charges imputed data were as close or closer
to the Benford proportions for two tests (First
Digit and First-Two Digits) than the original
data set. As such, based on the graphs, it could
be easy to disguise the fact that 20% of the
data were artificially generated. On the other
hand, the imputed values for the Payments
variable did not seem to have much of an effect
based on the Benford analysis. There was a gap
in the original data with numbers beginning
with a 2 or 3, and that did not change much
when 20% of the values were replaced. That is,
the imputed set was also non-Benford. These
results imply that imputation of missing val-
ues with uniform random numbers does not
significantly change how well the data set fit
Benford’s Law.
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