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Abstract

This article focuses on spatial cluster detection methods, mainly the scan methods. We
introduce the scan scatistics and the mathematical concepts they rely on and we discuss about
the choice of the underlying model. Finally these methods are applied to two socio-economic
data sets.
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Introduction

Cluster detection has become a very fruitful
research subject since the earlier work of Naus
(1963): a thorough review of the proposed
methods, which have been first applied to tem-
poral data and then extended to spatial and
spatio-temporal data, is given by Glaz et al.
(2001).

Most of the spatial cluster detection meth-
ods have been set up to analyse epidemiolog-
ical data, in order to identify areas with un-
usually high or low rates of disease outcome
and estimate their significance (Kulldorff and
Nagarwalla, 1995). Since then, these methods
have been used in many other fields: astron-
omy, forestry, ecology, genetics, ... (Lawson
and Denison, 2002). However, spatial clus-
ter detection for socio-economic data is not
very common: let us mention Minamisava

et al. (2009) who worked on the spatial loca-
tions of murders, Exeter and Boyle (2007) who
looked for areas exhibiting abnormal suicide
rate, and Huang et al. (2009) who investigated
transportation data. When analysing socio-
economic data in geographical units, people of-
ten want to know whether the measure in one
unit is close to the measures in the neighbour-
ing units. Local indicators of spatial association
(Anselin, 1995) are useful tools to do that but
they only provide one indicator for every geo-
graphical unit and, contrary to spatial cluster
detection methods, they do not investigate sets
of neighbouring units.

Many spatial cluster detection methods can
be found in the literature: some of them rely
on nonparametric density estimation (Kelsall
and Diggle, 1995), some are based on a spe-
cific point process model (Stoica et al., 2007).
Dematteï et al. (2007) transform a spatial data
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set into a unidimensional one before looking
for clusters. In this article, we will focus on
the most popular methods for local cluster de-
tection named as spatial scan methods. Since
the article by Cressie (1977), the scan statistic
denotes the maximal concentration observed
on a collection of potential clusters. Originally,
the size of all the potential clusters had to be
the same, so that the scan statistic was just
the maximum number of events in a window
of size d, d being fixed a priori. This major
drawback vanished when Kulldorff (1997) in-
troduced the scan statistic based on general-
ized likelihood-ratio (GLR) in a Poisson model,
which allows to compare the concentration in
windows having different sizes. In the same
article, the Bernoulli model scan statistic is de-
fined to analyse point processes with binary
marks, such as case/control data: if the marks
of the cases are 1 and those of the controls are
0, the goal is to identify the areas in which
the marks are significantly higher, i.e. the areas
where there are significantly more cases, taking
into account the number of controls. Later on,
Kulldorff et al. (2009) introduced the Gaussian
model scan statistic which allows to analyse
point processes with continuous marks.

In the first part of the paper, we give details
about the Bernoulli and Gaussian model-based
scan statistics and the way to evaluate their
significance. Then we apply them to socio-
economic data sets and we discuss the best
choice according to the nature of the data. The
paper is concluded with a discussion.

1. Likelihood-based scan statistics

Let {(xi, si), i = 1, · · · , n} be a sample of spa-
tial data, where si ∈ D stands for the spatial
location and xi stands for the corresponding
observation of a numeric variable X. The area
D ⊂ Rd is the observation domain and the spa-
tial locations are usually bidimensional (d = 2),
sometimes tridimensional (d = 3). Our goal is
to detect the spatial area Z ⊂ D in which obser-
vations of X are significantly different (larger
or smaller) than elsewhere. Let nZ be the num-
ber of locations in area Z and ∑Z the sum over

all these locations. The complementary set of
Z is denoted by Z̄.

The scan methods usually consist in maxi-
mizing a likelihood ratio induced by a paramet-
ric model in a collection of potential clusters.
Thus the two questions to answer are: how to
choose the potential clusters and which para-
metric model should be used?

Concerning the potential clusters, we will
focus here on circular clusters, such as Kull-
dorff (1997). The set of potential clusters, de-
noted by D, is the set of discs (or balls if d = 3)
centered on a location and passing through
another one:

D = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

where Di,j is the disc (or the ball) centred on
si and passing through sj. Since the disc may
have null radius (if i = j), the number of poten-
tial clusters is n2. This set of potential clusters
is the most popular one, mainly because it
allows a fast computation. However, people
who are interested in detecting non-circular
clusters (clusters along a river, for example)
may focus on the wide family of elliptic win-
dows with predetermined shape, angle and
center introduced by Kulldorff et al. (2006). The
major drawback of this alternative is the very
large number of possible clusters to test. Al-
ternatively, one can use arbitrarily-shaped spa-
tial scan statistics that have been proposed by
Patil and Taillie (2004), Duczmal and Assuncão
(2004), Tango and Takahashi (2005) or Cucala
et al. (2012): the potential clusters are com-
pletely data-based and their number is quite
limited, but the computation of distances be-
tween all pairs of spatial locations is needed
in order to find them. The ultimate solution
would be to consider as possible clusters all the
convex envelopes including any subset of the
spatial locations. However, this is computation-
ally infeasible when the number of locations is
large.

Now, let us consider two parametric models
associated to likelihood-based scan statistics.
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1.1. Bernoulli model

This model was introduced by Nagarwalla
(1996) for binary data: xi ∈ {0, 1}. The null
hypothesis H0, corresponding to the absence of
cluster, is the following: "the xi’s are indepen-
dent observations of a Bernoulli distribution
with parameter p". To each potential cluster
Z ⊂ D is associated an alternative hypothesis,
corresponding to the presence of a cluster in
Z, H1,Z: "the xi’s are independent observations
of a Bernoulli distribution with parameter pZ
if si ∈ Z and parameter pZ̄ otherwise". The
likelihood of the sample under H0 is

L0(p) = p∑D xi (1− p)n−∑D xi

and the maximum is obtained for p∗ = ∑D xi
n .

The likelihood of the sample under H1,Z is

L1,Z(pZ, pZ̄) = p∑Z xi
Z (1− pZ)

nZ−∑Z xi

× p∑Z̄ xi
Z̄ (1− pZ̄)

nZ̄−∑Z̄ xi

and the maximum is obtained for p∗Z =
∑Z xi

nZ
et p∗Z̄ = ∑Z̄ xi

nZ̄
. The likelihood ratio be-

tween both hypotheses is

λ(Z) =
L1,Z(p∗Z, p∗Z̄)

L0(p∗)

and the more this ratio, the more likely the
presence of a cluster in Z. Thus, Kulldorff
(1997) proposed to maximize this ratio over
the set of potential circular clusters defined
previously, denoted by D. The scan statistic is

λ = max
Z∈D

λ(Z).

Remark that if we look only for positive
(resp. negative) clusters where X is signifi-
cantly larger (resp. smaller) than elsewhere,
we should focus on areas Z for which p∗Z is
larger (resp. smaller) than p∗Z̄.

1.2. Gaussian model

This model was introduced by Kulldorff et al.
(2009) for continuous data: xi ∈ R. The null
hypothesis H0, corresponding to the absence of

cluster, is the following: "the xi’s are indepen-
dent observations of a Gaussian distribution
with mean µ and variance σ2". To each poten-
tial cluster Z ⊂ D is associated an alternative
hypothesis, corresponding to the presence of
a cluster in Z, H1,Z: "the xi’s are independent
observations of a Gaussian distribution with
common variance σ2

Z and mean µZ if si ∈ Z,
µZ̄ otherwise". The likelihood of the sample
under H0 is

L0(µ, σ2) = (2πσ2)−n/2 exp
[
− ∑D(xi − µ)2

σ2

]
and the maximum is obtained for µ∗ = ∑D xi

n

and σ2∗ = ∑D(xi−µ∗)2

n . The likelihood of the
sample under H1,Z is

L1,Z(µZ, µZ̄, σ2
Z) = (2πσ2

Z)
−n/2

× exp
[
− ∑Z(xi − µZ)

2 + ∑Z̄(xi − µZ̄)
2

σ2
Z

]
and the maximum is obtained for µ∗Z = ∑Z xi

nZ
,

µ∗Z̄ = ∑Z̄ xi
nZ̄

and σ2∗
Z =

∑Z(xi−µ∗Z)
2+∑Z̄(xi−µ∗Z̄)

2

n .
The likelihood ratio between both hypotheses
is

λ(Z) =
L1,Z(µ

∗
Z, µ∗Z̄, σ2∗

Z )

L0(µ∗, σ2∗)
.

Such as for Bernoulli model, this ratio is maxi-
mized over the set of potential circular clusters
D and the scan statistic is still

λ = max
Z∈D

λ(Z).

Once again, if we look only for positive (resp.
negative) clusters where X is significantly
larger (resp. smaller) than elsewhere, we
should focus on areas Z for which µ∗Z is larger
(resp. smaller) than µ∗Z̄.

1.3. Estimating the significance

Once the scan statistic is computed, we need to
evaluate its significance. Unfortunately, the
null distribution of λ is untractable due to
the dependence between λ(Z) and λ(Z′) if
nZ∩Z′ 6= 0. Another solution, chosen by Kull-
dorff (1997) or Kulldorff et al. (2009), would
be to simulate random datasets under the null
hypothesis. However, this solution is valid
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only if the true distribution is really Bernoulli
or Gaussian, assuring that the correct alpha
level is maintained. Thus we decided to run a
technique called random labelling: a simulated
dataset is obtained by randomly associating the
observations xi to the spatial locations si. Let T
denote the number of simulated datasets and
λ(1), · · · , λ(T) be the values of the scan statistic
associated to these datasets. The p-value of the
scan statistic λ, observed on the initial sample,

is ∑T
t=1 11(λ(t)>λ)

T+1 .
This randomization procedure is very in-

teresting because, contrary to the simulation
of data under the null hypothesis, it does not
need any parameter estimation procedure so
that its computation is much easier. Moreover,
it is the only one for which the type I error
remains equal to α whatever the underlying
distribution of the data. However, if the labels
are spatially autocorrelated, this may lead to
overestimating the significance of the detected
clusters. Note that the same problem arises
with any likelihood-based scan statistic when
the significance is estimated through Monte
Carlo simulation. As mentioned by Haining
(2003), restricted randomization procedures
taking into account this spatial autocorrelation
are usually applied to global clustering tests
such as Ripley’s K and derived methods. On
the other hand, for local cluster detection tests
such as scan statistics, this approach is much
less frequent, except in a few articles including
the ones by Loh and Zhu (2007) and Zhang
et al. (2012).

Let us mention that the detection of clus-
ters and inference with spatial scan statistics
might be quite computer-intensive, specially
when the number of spatial locations is large.
However, the choices we made for the set of po-
tential clusters and for the significance estima-
tion are the ones minimizing the computation
time. Indeed, finding all the circular potential
clusters is straightforward once the distances
between all pairs of spatial locations have been
computed. Then, during the significance es-
timation process, this set of potential clusters
remains the same since the spatial locations
are not modified. Finally, a simple random

permutation of the n first integers is needed to
obtain a permuted sample and likelihood has
to be maximized for each of the T permuted
samples.

2. Applications

2.1. Public housing

We analysed a data set provided by the French
statistics agency INSEE (Institut National de la
Statistique et des Etudes Economiques) : for
year 2009, the number of public housing ac-
comodations and the total number of accomo-
dations in each of the 94 French departments
have been computed. From these binary data,
we obtained continuous data by computing
the ratio between the number of public hous-
ing accomodations and the total number of
accomodations in each department. Figure 1
illustrates the spatial distribution of this ratio.
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Figure 1: Ratio of public housing accomoda-
tions

This ratio seems to be larger in the Parisian
area and in the North, smaller in the South-
West. Since the ratio is a continuous data, we
applied the scan method based on Gaussian
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model and the results are given by Figure 2.
Remark that the location associated to each
department is the location of its capital city.
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Figure 2: Ratio of public housing accomoda-
tions: clusters

The shaded area, including 19 departments
in the Parisian area and the Northern part of
France, is the most significant cluster. The
logarithm of the scan statistic approximately
equals 32.9 and the p-value estimation, based
on m = 1000 simulations, equals 0.001. Of
course this is a positive cluster: the ratio of
public housing accomodations is 0.18 inside
and only 0.09 outside. The lightened area, in-
cluding 61 departments, is the most significant
negative cluster. The logarithm of the negative
scan statistic approximately equals 24.2 and
the p-value estimation still equals 0.001. These
results confirm the feeling from Figure 1: in
France, public housing ratio is not uniformly
distributed and is much larger in high-density
regions such as the Parisian area and the North
of France.

However, we may remark that, in the
preceding analysis, the department with the
largest number of accomodations (Paris, more
than 1300000) has the same weight than the

one with the smallest number of accomoda-
tions (Lozère, with less than 60000). We cir-
cumvented this issue by analysing the raw bi-
nary data (the number of accomodations, not
the ratio) through the scan method based on
Bernoulli model: for each accomodation, xi = 1
if it is a public housing accomodation, other-
wise xi = 0. The results we obtained are exactly
the same than the previous ones.

2.2. Presidential election

We applied the same scan methods to the re-
sults of the 2012 presidential election in France
for François Hollande, head of the Socialist
Party, in each department. Here again, the
original binary data (number of votes for Hol-
lande and total number of votes) can be trans-
formed into continuous data (ratio of votes
for Hollande). Figure 3 illustrates the spatial
distribution of this ratio.
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Figure 3: Presidential election results

The South-West of France is traditionally
an area where more people vote for the Social-
ist Party. On the other side, the opponent of
François Hollande, Nicolas Sarkozy, obtained
his best results in the East of France. These cor-
respond to the clusters exhibited by the scan
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Figure 4: Presidential election results: clusters. Left: Gaussian model. Right: Bernoulli model.

method based on Gaussian model, plotted on
the left part of Figure 4.

The most significant cluster contains 25 de-
partments in the South-West in which 57% of
the voters voted for Hollande. The most signif-
icant negative cluster contains 20 departments
in the East in which 54% of the voters voted
for Sarkozy. Both p-value estimations equal
0.001. However, the population density in the
positive cluster is quite low so that we won-
der whether taking into account the number
of voters, using Bernoulli model on the origi-
nal binary data, would change something. The
results obtained through Bernoulli model are
plotted on the right part of Figure 4.

The most significant cluster is now a nega-
tive one, including 37 departments in the East
and in which Sarkozy obtained 5998531 votes
among 11316095, that is around 53%. Com-
pared to the negative cluster on the left part
of Figure 4, this one includes neighbouring de-
partments with high population density. The
percentage of votes for Sarkozy has slightly
decreased (53% instead of 54%) but this is bal-
anced by the increase in the number of vot-
ers. On the other side, the most significant
positive cluster is now a set of three depart-

ments in the Parisian area (Paris, Seine-Saint-
Denis and Val-de-Marne) in which Hollande
obtained 1247055 votes among 2139026, that is
around 58, 3%. Since this cluster only contains
three departments, it was not that significant
in the Gaussian model, but it is in the Bernoulli
model because the number of population in it
is very large.

2.3. Implementation

The analysis of both data sets has been done
using personal C++ software which is avail-
able upon request. However, most people who
perform scan analysis use the free SaTScan
software (Kulldorff, M. and Information Man-
agement Services Inc, 2015), which allows to
compute scan statistics based on any paramet-
ric model: Bernoulli and Gaussian, such as in
our applications, but also Poisson, exponential,
ordinal... The data may be aggregated in ge-
ographical units, as specified in the data sets
we analysed, or there may be unique coordi-
nates for each observation. The set of poten-
tial clusters can be either the set of circular
clusters defined previously or a set of elliptic
clusters with specific parameters. The SaTScan
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software can be run as part of R environment
using the R package rsatscan: this package pro-
vides functions for writing R data frames in
SaTScan-readable formats, for setting SaTScan
parameters, for running SaTScan in the OS, and
for reading the files that SaTScan creates.

Alternatively, some likelihood-based scan
statistics can be computed using other soft-
wares. The Windows-based non-free Clus-
terSeer software (BioMedware, 2016) contains
24 different statistical methods for detecting
and evaluating spatial, temporal and space-
time clustering, including the spatial scan
statistic based on Poisson model. The R pack-
age SpatialEpi (Chen et al., 2016) contains
a function which performs the purely spa-
tial scan statistic with either the Poisson or
Bernoulli probability model. Let us also men-
tion the R package graphscan (Loche et al.,
2015) and the free software FlexScan (Taka-
hashi et al., 2013) which compute a spatial scan
statistic based on Poisson model but use a non-
parametric rather than circular or elliptic defi-
nition of clusters.

Conclusion

Spatial cluster detection methods are useful to
exhibit areas in which the distribution of a vari-
able is significantly different than elsewhere.
Even if these areas are sometimes obvious on
graphic plots, the scan methods are necessary
to obtain precise boundaries of the cluster and
evaluate its significance. Moreover, as expe-
rienced with the election results application,
the results may be quite different depending
of which data is analysed: the binary raw data
(the number of votes for Hollande and the to-
tal number of votes) or the continuous partial
data (the ratio of votes for Hollande). To our
knowledge, the scan methods are the only lo-
cal spatial cluster detection methods who allow
to analyse either continuous or binary spatial
data.

Remark that, when the number of spatial lo-
cations is not that huge, these scan statistics can
be computed quickly. As noted by Kulldorff
et al. (2006), the main goal of a cluster detec-

tion technique is to generate an alarm so that
the scientists can investigate more precisely the
details of this excess of unusual values.

In this work we only focused on the most
significant cluster but looking for secondary
clusters is straightforward using the method
proposed by Zhang et al. (2010): once a signifi-
cant cluster is found, remove the data included
in that cluster and restart the analysis.

Finally, we should underline that, if these
scan methods take into account the population
density, they could also be adjusted for any
continuous covariate as proposed by Klassen
et al. (2005), such as the age of an underlying
population. This could be done by modeling
a regression function of the marks depending
on the adjusted covariates, and then analysing
the corresponding residuals. This is for exem-
ple the way López et al. (2015) analysed the
housing prices in Madrid, Spain.
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