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The biomechanical data considered in this paper are obtained from a study carried out to
understand the coordination patterns of finger forces produced from different tasks. The
variable in this data cannot be considered independent because of within-individual repeated
measurements, and because of simultaneous finger measurements. To fit these data, we propose
a methodology focused on linear mixed effects models. Different random effects structures
and complex variance-covariance matrices of the error are considered. We highlight how to
use the lme R function to deal with such a modelling. The paper is accessible to an audience
experienced with linear models. Some familiarity with the R software is also helpful.
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1. Introduction

In experimental sciences (agronomy, biology,
experimental psychology, ...), analysis of vari-
ance (ANOVA) is often used to explain one
continuous response with respect to differ-
ent experimental conditions, assuming ho-
moscedastic errors. In studies where individu-
als contribute more than one observation, such
as longitudinal or repeated-measures studies,
classical ANOVA is no longer convenient since
the assumption of variable data independence

is not valid. The linear mixed model (Laird
and Ware, 1982) then provides then a better
framework to take correlation between these
observations into account. By introducing
random effects, mixed models allow to take
into account the variability of the response
among the different individuals and the pos-
sible within-individual correlation. Published
case studies using a mixed model approach
(Baayen et al., 2008; Onyango, 2009) often as-
sume a classical homoscedastic error term,
i.e. normally distributed with mean zero and
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constant variance. In this paper, we consider a
case study in which this assumption is relaxed
by allowing heteroscedastic and correlated
within-group errors. This work highlights, in
an educational way, the different steps of such
a modeling.

The data considered in this paper have been ob-
tained from a biomechanical study described
in detail in Quaine et al. (2012). Experiments
have been carried out to better understand
the coordination patterns of finger forces pro-
duced from different tasks corresponding to
different experimental conditions. One of
the objectives is to compare each finger force
intensity between the various tasks and, for
each task, to compare nearby fingers force
intensity. Subjects are required to press ledges
maximally with four fingers simultaneously
in different experimental conditions. Exper-
iments have been repeated three times per
experimental condition. In Quaine et al. (2012),
data have been analyzed first using a two-
factor ANOVA model by considering the force
measurement as response and fingers and ex-
perimental conditions as factors to be tested.
Nevertheless, as pointed out by the authors,
in this particular context, the ANOVA model
is not convenient since it does not take into
account the dependency between the fingers
due to simultaneous measurements, nor the
within-subject dependency due to repeated
measurements.

There are several facilities in R (R Development
Core Team (2008)) and S-PLUS (Insightful Cor-
poration (1992)) for fitting mixed models to
data. Among them are the nlme (Pinheiro
et al., 2014) and more recently the lme4 (Bates
et al., 2013) libraries. The lmer function in
the lme4 library provides an improvement
over the lme function in the nlme library, in
particular by implementing crossed random
effects in a way that is both easier for the
user and much faster. However, this func-
tion does not offer the same flexibility as the
lme function for composing complex variance-
covariance structures (Bates et al., 2013). First,
lme offers a much broader class of covariance
structures for the random effects. Secondly,
concerning the variance-covariance structures
for the residuals, the lme function takes into
account spatial or temporal autocorrelation,

heteroscedasticity or covariate-dependent vari-
ability in the weights argument, while lmer
only allows fixed prior weights for the obser-
vations. Because lmer has been implemented
more recently and because its primary ob-
jective is to propose a tool much faster and
with sufficient flexibility for most applications,
lmer presents these limitations compared to
lme to date. Note also that the summary
of a linear mixed model fit by lme provides
estimates of the fixed-effects parameters, stan-
dard errors for these parameters, t-ratios and
p-values, contrary to lmer that produces no
p-values. This lmer limitation is related to
the F statistic which, in an unbalanced data
context, do not exactly follow an F distri-
bution (Onyango (2009), Pinheiro and Bates
(2000)). Some websites (Bates et al. (2013);
Wikidot (2013)) provide comparisons between
nlme, lme4 and others packages and soft-
wares. All analyses in the present paper have
thus been performed using the lme function
in the nlme library, described in detail in Pin-
heiro and Bates (2000) and with the 64-bit
R version 3.1.0 (2014-04-10).

The paper is organized as follows. Section 2
presents the data set. Section 3 exposes a pre-
liminary study including ANOVA with repeti-
tions and its limits. Mixed model specification
is presented in Section 4, with details on the
modeling steps. We present and discuss the re-
sults in Section 5 and we end with conclusions
in Section 6.

2. The data

The data considered in this paper have been
first described in Quaine et al. (2012). Biome-
chanical researchers propose experiments
where subjects are submitted to various tasks
with the four long fingers (without the thumb).
In this study, 15 subjects were required to
press ledges maximally with the four fingers
simultaneously in flexion and extension. First
in extension, two force locations at the first
(ExtP1) and at the third (ExtP3) phalanx were
tested and then in flexion, only the third pha-
lanx location (FlexP3) was tested. From now
on, we call location the three experimental
conditions, ExtP3, FlexP3, ExtP1. After 20
trials at low and intermediate intensity, sub-
jects are asked to press maximally three times
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per location, with a one-minute rest to avoid
muscular fatigue. Experiments in the three dif-
ferent locations were separated by five minute
rests.

The data set thus includes 540 measures of
finger force intensity (F), subject number (in-
dividual from 1 to 15), location (with values
ExtP3, FlexP3 and ExtP1), finger (with values I
for index, M for middle, R for ring and L for lit-
tle). For coding purpose, a reiteration variable
(trial from 1 to 135) has been added with
different numbers from one subject to another
and from one location to another. In other
words, only 4 simultaneous measures of the
four fingers of one reiteration of a given indi-
vidual in a given location share the same value
of the reiteration variable. The head command
in R helps to observe the data structure:

> head(Data.new,200)
F location finger indiv trial

1 8.551025 ExtP3 I 1 1
2 7.836914 ExtP3 I 1 2
3 7.653809 ExtP3 I 1 3
4 7.598877 ExtP3 I 2 4
5 6.805420 ExtP3 I 2 5
6 6.506348 ExtP3 I 2 6
...
46 7.550049 ExtP3 M 1 1
47 6.848145 ExtP3 M 1 2
48 6.945801 ExtP3 M 1 3
49 4.431152 ExtP3 M 2 4
50 4.528809 ExtP3 M 2 5
51 4.699707 ExtP3 M 2 6
...
181 22.454834 FlexP3 I 1 46
182 25.079346 FlexP3 I 1 47
183 22.003174 FlexP3 I 1 48
184 29.632568 FlexP3 I 2 49
185 34.143066 FlexP3 I 2 50
186 34.051514 FlexP3 I 2 51
...

3. Preliminary study

3.1. Exploratory data analysis

The raw data set is shown in Figure 1. One
can see that the intensities are clearly higher in
FlexP3 location than in ExtP1 location and in
ExtP3 location, in position but also in scatter-
ing. Index measures (blue circles) are nearly
always higher than middle measures (red tri-
angles), themselves higher than ring measures
(green plus), themselves higher than little mea-
sures (magenta times), except in the ExtP1
location where this order appears less often.
Differences between subjects are also to be ob-
served. For instance, individual 4 always has

low measures whatever the location, whereas
individual 7 always has high measures. One
can also see that index and middle measures
on one hand and ring and little measures on
the other hand are close. This is confirmed by
the correlation between fingers illustrated in
Figure 2.

This exploratory data analysis suggests that
intensity measures are different from a loca-
tion to another, from a finger to another, but
also that a subject effect has to be taken into
account. Moreover, simultaneous finger mea-
surements imposed by the experimental design
cannot be considered as independent.

3.2. Two-factor ANOVA with repetitions and its
limitations

In Quaine et al. (2012), the data were treated
with a two-factor ANOVA even though it is not
convenient in this context since the subject ef-
fect and the dependence between simultaneous
finger measurements were omitted. In other
words, the study was done as if measurements
had been done finger by finger, and with 45 dif-
ferent subjects. Here, we begin our study with
a two-factor ANOVA with repetitions, taking
into account the fact that measurements are
repeated on the same subjects. Following R
conventions, our model is thus:

Fl f ik = µ + αl + β f + γl f + δi + ε l f ik (1)

where
• Fl f ik is the kth trial k ∈ {1, . . . , 3} of

individual i ∈ {1, . . . , 15}, in location
l ∈ {ExtP3, FlexP3, ExtP1} and finger
f ∈ {I, M, R, L}

• µ is the population measurement of in-
dex in location ExtP3

• αl is the overall difference between mea-
surements in location ExtP3 and location
l for index (αExtP3 = 0)

• β f is the overall difference between mea-
surements of index and finger f in loca-
tion ExtP3 (β I = 0)

• γl f is the interaction term of location l
and finger f (γExtP3, f = γl,I = 0 )

• δi is the effect of individual i with respect
to individual 1, considered as a fixed ef-
fect (δ1 = 0)

• ε l f ik is the residual error, supposed to
be normally distributed, centred, with
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Figure 1: Finger force intensity by location (left ExtP3, centre FlexP3, right ExtP1), by subject
(on the x axis) and finger (blue circle for index, red triangle for middle, green plus for ring and
magenta times for little).

variance σ2. Moreover, all residual errors
are supposed to be independent.

Note that this model implies the estimation of
14 individual fixed effects. Residuals of the
model appear in Figure 3. They suffer from
several defects:

• They are clearly not identically scattered
from one location to another, whereas
ANOVA model imposes equal variances
in all groups.
• Some subjects have either all positive or

all negative residuals, which suggests a
subject effect that has not well been taken
into account.
• Residuals still remain quite correlated

from a finger to another, as it can be seen
in Figure 4.

To deal with these defects, in Section 4, we
focus on linear mixed-effects models to fit the
data set.

4. Model specification using a lin-
ear mixed-effects model

4.1. Modelling the random effect structure

Let denote Fl f ik as the force measured on fin-
ger f of individual i at trial k in location l
with l = ExtP3, FlexP3, ExtP1, f = I, M, R, L,
i = 1, . . . , 15 and k = 1, 2, 3. The linear mixed
model M0 for the response Fl f ik is defined as

Fl f ik = µ + αl + β f + γl, f + ξi + ε l f ik (2)

with αExtP3 = 0, β I = 0, γExtP3, f = γl,I = 0. In
this model, µ is the mean for location ExtP3
and finger index, αl is the fixed effect of loca-
tion l with respect to location ExtP3, β f is the
fixed effect of finger f with respect to finger in-
dex and γl, f is the interaction between location
l and finger f . The random effect ξi in (2) is
the individual random effect and is supposed
to be a centred gaussian random variable with
variance τ2

1 . The main difference between the
ANOVA with repeated measurements (eq. 1)
and the model M0 (eq. 2) lies in the definition
of the individual effects:
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Figure 2: Pairwise scatter plots of force intensity measures for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.921 between index and middle, 0.876
between index and ring, 0.801 between index and little, 0.898 between middle and ring, 0.704
between middle and little, 0.764 between ring and little.

• In the first one, the individual ef-
fects are fixed (non-random) and we
need to estimate 14 mean coefficients
δi, i = 2, . . . , 15.

• In the latter one, the individual are ran-
dom, centred at 0 and we only need to
estimate the variance of this random vari-
able τ2

1 .
The linear mixed model (2) can be rewritten as

Fl Iik
FlMik
FlRik
FlLik

 = µ


1
1
1
1

+ αl


1
1
1
1

+


β I
βM
βR
βL



=+


γl I
γlM
γlR
γL

+ ξi


1
1
1
1

+


ε l Iik
ε lMik
ε lRik
ε lLik

 (3)

with ξi ∼ N (0, τ2
1 ) and ε lik =


ε l Iik
ε lMik
ε lRik
ε lLik

 ∼
N (0, σ2 I) with I the identity matrix. All
random effects are assumed independent
from each other and independent from the
error term. Note that the assumption

Var(ε lik) = σ2 I can be relaxed as shown in
section 4.2 in order to model unequal vari-
ances and specific within-group correlation
structures. In the sequel, we use the lme func-
tion of the nlme package to fit models. We use
the maximum likelihood estimation criterion
by specifying method=”ML” and we compare
several nested models using the anova func-
tion which performs likelihood ratio tests and
displays AIC and BIC values. Note that, here,
since all considered models have the same
fixed-effects structure, they could be fitted us-
ing the REML (Restricted Maximum Likeli-
hood) method and still be compared using
likelihood ratio tests. However, whatever the
estimation method (ML or REML), be aware
that the p-values of the likelihood ratio test
may be conservative while testing the random
effects structure (Pinheiro and Bates (2000)).
Model M0 is fitted using the R code displayed
in Code 1. Figures 5 and 6 show that for each
location and for each finger, the boxplots of
the standardized residuals by individual for
model M0 are not centred at zero. This clearly
suggests that there are different individual ef-
fects from one location to another and from
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Figure 3: ANOVA with repeated measurements residuals by location (left ExtP3, centre FlexP3,
right ExtP1), by subject (on the x axis) and finger (blue circle for index, red triangle for middle,
green plus for ring and magenta times for little).

one finger to another.

To solve this problem, we introduce a location
within individual random effect ξil , a finger
within individual random effect ξi f and an in-
teraction random effect between location and
finger ξil f leading to model M1:


Fl Iik
FlMik
FlRik
FlLik

 = µ


1
1
1
1

+ αl


1
1
1
1

+


β I
βM
βR
βL

+


γl I
γlM
γlR
γL



=+ ξi


1
1
1
1

+ ξil


1
1
1
1

+


ξiI
ξiM
ξiR
ξiL

+


ξil I
ξilM
ξilR
ξilL



=+


ε l Iik
ε lMik
ε lRik
ε lLik

 (4)

with ξi ∼ N (0, τ2
1 ), ξil ∼ N (0, τ2

2 ),
ξi f ∼ N (0, τ2

3 ), ξil f ∼ N (0, τ2
4 ) and

ε lik =


ε l Iik
ε lMik
ε lRik
ε lLik

 ∼ N (0, σ2 I).

We fit model M1 using the R code displayed
in Code 2. For each location and for each fin-
ger, the boxplots of the standardized residuals
(Figures 7 and 8) by individual for model M1
are now centred at zero. However, Figure 7
also indicates that the residual variability is
different from a location to another. To take
this variability into account, we define a new
model M2 assuming a different variance per
location for ξil i.e ξil ∼ N (0, τ2

l ) . This model
is fitted in R using the code displayed in Code
3. To compare these models, we first use the
ANOVA function as displayed in Code 4. The
AIC and BIC values and the p-value of the like-
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Figure 4: Pairwise scatter plots of the ANOVA with repeated measurements residuals for each
pair of fingers (circle ExtP3, triangle FlexP3, plus ExtP1). Empirical correlations are 0.717 between
index and middle, 0.297 between index and ring, 0.330 between index and little, 0.510 between
middle and ring, 0.446 between middle and little, 0.440 between ring and little.

lihood ratio statistic show that model M2 gives
a better fit. However, note that this model does
not improve the residual graphs: there still
remains different residual variability from one
location to another.

To deal with this problem, a more general
model will be considered in Subsection 4.2.1
keeping the random effects structure defined
in model M2, but allowing different variances
by location for the within-group errors. More-
over, by plotting the pairwise scatter plots of
model M2 residuals by each pair of fingers
in Figure 9, we note that introducing random
effect terms in the model did reduce corre-
lations between fingers. Therefore, in Subsec-
tion 4.2.2, we will consider different correlation
structures for the within-group errors.

4.2. Modelling the residual variance-covariance
structure

The linear mixed model defined in Section
4.1 allows flexibility in the specification of
the random effects structure, but restricts

the within-group errors to be independent,
identically distributed with mean zero and
constant variance. As observed previously,
we need to relax this assumption by allow-
ing heteroscedastic and correlated within-
group errors. Thus, we extend model M2

by assuming ε lik =


ε l Iik
ε lMik
ε lRik
ε lLik

 ∼ N (0, σ2Λl).

Note that the within-group errors ε lik are as-
sumed to be independent for different l , for
different i and different k and independent
of the random effects. The 4 × 4 matrices
Λl , l = ExtP3, FlexP3, ExtP1 can be decom-
posed into a product of simpler matrices
Λl = VlClVl , where Vl is a diagonal matrix
containing the standard deviation of each fin-
ger in location l and Cl is a positive-definite
matrix with all diagonal elements equal to
1 describing the correlation of the random
vector ε lik. This decomposition of Λl into a
variance structure component and a correla-
tion structure component is convenient both
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Figure 5: Individual boxplots of the standardized residuals by location for model M0.

Figure 6: Individual boxplots of the standardized residuals by finger for model M0.
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Figure 7: Individual boxplots of the standardized residuals by location for model M1.

Figure 8: Individual boxplots of the standardized residuals by finger for model M1.
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Figure 9: Pairwise scatter plots of model M2 residuals for each pair of fingers (circle ExtP3,
triangle FlexP3, plus ExtP1). Empirical correlations are 0.482 between index and middle, 0.187
between index and ring, 0.005 between index and little, 0.370 between middle and ring, −0.026
between middle and little, 0.405 between ring and little.

theoretically and computationally. It allows us
to model separately the two structures and to
combine them into a flexible family of models.
More detail on variance-covariance structures
can be found in Pinheiro and Bates (2000).

The nlme library provides a set of classes
of variance functions, the varFunc classes,
which are used to specify within-group vari-
ance structures. The nlme library also pro-
vides a set of classes of correlation structures,
the corStruct classes, which are used to
model dependence among the within-group
errors in the context of linear mixed effects
models (Pinheiro and Bates (2000)).

4.2.1 Modelling the variance matrix Vl for
each location

In this subsection, several variance structures
Vl are tested to model residuals. As already
pointed out in Section 4.1, the variance of resid-

uals clearly differs from one location to another.
We therefore consider a first model derived
from model M2, noted model M2.1, assuming
a different variance from one location to an-
other

Vl =


σl 0 0 0
0 σl 0 0
0 0 σl 0
0 0 0 σl

 , Cl =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Note that, in this model, the correlation
matrix Cl , equal to the identity matrix, as-
sumes no correlation between fingers. To fit
model M2.1, we use the weights argument
of the lme function (see Code 5). The option
control=lmeControl(msMaxIter=1000)
makes it possible to increase the maximum
number of iterations of the algorithm to
achieve convergence.

We compare model M2.1 to model M2 using
the anova function (Code 6). The p-value of
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Figure 10: Boxplots of the standardized residuals by location and by finger for model M2.

Figure 11: Boxplots of the standardized residuals by location and by finger for model M2.1.
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the likelihood ratio statistic shows that the
former best fits the data. Figures 10 and 11
display boxplots of the standardized residuals
by location and by finger from models M2 and
M2.1 respectively. Note that, because of differ-
ent variances by location in model M2.1, the
standardized residuals, displayed in Figure 11,
are calculated as the differences between the
data Fl f ik and the fitted values F̂l f ik divided by
the estimated standard deviation σ̂l .

Figure 11 shows that, in comparison to model
M2, the standardized residuals are now sim-
ilarly scattered from one location to another.
It means that we successfully captured the lo-
cation variability of the data. However, the
index finger variability appears to be different
from that of the other fingers. Thus, we in-
troduce model M2.2 by assuming a different
residual variance for the index in each location
(denoted σ2

l I for the index and σ2
lo for the other

fingers):

Vl =


σl I 0 0 0
0 σlo 0 0
0 0 σlo 0
0 0 0 σlo

 , Cl =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The R code for model M2.2 is displayed in Code
7. Figure 12 shows that finger variabilities are
now similar. Finally, the empirical correlations
of the standardized residuals between fingers
in model M2.2 are given in Code 8. They are
lower than in the previous models but they re-
main non negligible between index and middle
(0.450) and between ring and little (0.330).

4.2.2 Modelling the correlation matrix Cl

Here, we retain the Vl matrix defined in model
M2.2 and we propose different correlation ma-
trix structures to model finger dependence.

In a first step, we define model M2.3 using the
following correlation matrix:

Cl =


1 σMI σRI σLI

σMI 1 σRM σLM
σRI σRM 1 σLR
σLI σLM σLR 1

 .

To do that, we use the correlation argu-
ment of the lme function (see R code in Code
9).

Code 10 displays AIC and BIC criteria for
models M2.2 and M2.3. Using these criteria to
compare both models, we prefer model M2.3
taking into account the correlation residuals
between fingers since it has the lowest AIC
and BIC. Our choice is confirmed by Figure
13, which displays the boxplots of the nor-
malized residuals by location and by finger
for Model M2.3. Note that the normalized
residuals are calculated by multiplying the
standardized residuals by the inverse square-
root factor of the estimated error correlation
matrix Ĉl . However, we can observe in Code
11 that the correlations between fingers are not
really improved with respect to model M2.2.
Nevertheless, we keep model M2.3 as our final
model because it gives us an interpretable
estimated correlation matrix.

To explore further this correlation issue, we
also compute residual correlations between
fingers, location by location in Code 12. It
appears that there is a different correlation
matrix by location.

An improvement of the final model would thus
be to introduce Cl defined as:

Cl =


1 σMIl σRIl σLIl

σMIl 1 σRMl σLMl
σRIl σRMl 1 σLRl
σLIl σLMl σLRl 1

 .

Unfortunately, to the best of our knowledge,
the correlation option of the lme function
does not allow such a modelling.

5. Results

For exploration of parameter estimates, we
again fit model M2.3 by REML which is often
preferred to ML estimation because it produces
unbiased and non-negative variance parameter
estimates (Patterson and Thompson, 1971).

5.1. Residuals analysis of the final model

To confirm the validation of model M2.3, we
use the classical plots (Figure 14) for diagnos-
tics purposes: normalized residuals histogram,
normal QQ-plot, normalized residuals versus
fitted values plot, normalized residuals versus
observed values plot.
The histogram of the residuals and the normal
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Figure 12: Boxplots of the standardized residuals by location and by finger for model M2.2.

Figure 13: Boxplots of the normalized residuals by location and by finger for model M2.3.
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QQ-plot suggest that the residuals fit the nor-
mal distribution reasonably well, except for
the extreme tails. The residuals versus fitted
values plot and the residuals versus observed
values plot do not highlight any residual struc-
ture.

5.2. Results analysis

From the lme output in Code 13, we sum-
marize the REML estimates of the standard
deviation components in Table 1. Estimated
standard deviations (τ̂1, τ̂l , τ̂2, τ̂4) of the ran-
dom effects are directly obtained from the
output in the Random effects part. More-
over, the estimated within-group standard
deviations, σ̂l f , in the last column of Table
1, are obtained by multiplying the residual
term 0.47 by the parameter estimates of the
Variance function part.

Most variance components have a greater stan-
dard deviation than the residual one, hence
justifying their inclusion as random effects in
the model. The high estimates of the stan-
dard deviation components τ̂1 and τ̂4 indicate
that the individuals and the interaction be-
tween finger and location clearly contribute
to the variability of the data. Concerning the
location within individual random effect, an
important variability is observed for locations
FlexP3 and ExtP1 with τ̂l equal to 5.46 and
1.92 respectively. Concerning the finger within
individual random effect, some variability is
also observed, but is lower than the previous
ones. Finally, it means that variability of the
force measures highly depends on the indi-
vidual and on the experimental conditions, in
particular in flexion at third phalanx location
and in extension at first phalanx location.

The lme output in Code 13 also provides esti-
mates of the fixed parameters. The intercept
(8.64) is interpreted as the average force inten-
sity measure for the index finger in the ExtP3
location. This group of measures is considered
as the baseline group and all other groups are
compared to this one. For instance, we can
see a significant decrease (−2.74) of the force
intensity measure for the ring finger in the
ExtP3 location compared to the force intensity
measure for the index finger in the same loca-
tion. The average force intensity measure for
the former is thus 8.64− 2.74 = 5.90. In the

same way, we calculate and display in Table 2
the estimated mean level of each finger in each
location.

Table 2: Estimated mean levels of the location-
finger crossing groups.

Location/finger Index Middle Ring Little
ExtP3 8.64 7.25 5.90 4.97
FlexP3 25.28 25.47 17.24 11.47
ExtP 1 14.73 11.16 9.83 10.94

In order to provide answers to study ob-
jectives, we introduce two contrast analyses.
Once the location-finger crossing groups vari-
able (named group) is created, we use the
constrasts function of the library MASS
(Venables and Ripley, 2002), as presented in
Code 14. Extract of results are displayed in
Codes 15 and 16. We only interpret the lines
of the first 8 (resp. 9) groups corresponding
to the number of tested contrasts in Code 15
(resp. Table 16). Code 15 shows that, for one
given finger, force intensities of each consid-
ered pair of locations are significantly different
at 5%. On the contrary, one can see in Code 16
that the two-by-two finger comparisons show
some significant differences:

• In the extension movement, the only sig-
nificant difference between nearby fin-
gers average force intensities is between
the index and the middle on the first pha-
lanx (p-value<1e− 06).
• In the flexion movement, we notice a

significantly higher average force inten-
sity for the middle than for the ring
(p-value<1e − 16), and a significantly
higher average force intensity for the
ring than for the little (p-value<1e− 11).

The estimation of the correlation matrix be-
tween measures of the four fingers is also pro-
vided in the Correlation section part of
the lme output (see Code 13). High positive
correlations are observed between the mea-
sures of index and middle fingers (0.50), ring
and little fingers (0.36) and, to a lesser degree,
middle and ring fingers (0.22). It means that,
in extension and flexion movements, index and
middle fingers on one hand and ring and little
fingers on the other hand seem to vary in the
same way.
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Figure 14: Diagnostic plots for model M2.3.

6. Conclusion

In this paper, we have proposed a methodol-
ogy to handle biomechanical data. The main
features of these data lie in the repetition of the
force intensity measures by individual and the
simultaneity of the measures of the four fingers
obtained from different tasks. Observations
have been fitted using a linear mixed model
with a complex random effects structure and a
non-diagonal residual variance-covariance ma-
trix using the lme R function from the nlme
package. Although some limitations in the im-
plementation of a more complex model have
been pointed out, this methodology has been
shown to provide the behavior of the force
among fingers during different experimental
conditions.

The force intensity is different for flexion and
extension. In extension, we have found con-
trasting intensity levels of the index and the
middle fingers on the first phalanx. In flexion,
we have observed different intensity levels

concerning the middle and the ring fingers, as
well as concerning the ring and little fingers.
Moreover, we have highlighted various sources
of variability for the force intensities, as the
individual, the finger and the experimental
conditions.

The analysis of the residual correlations in
Section 4.2.2 fails at giving independent nor-
malized residuals, suggesting that a more
complex correlation matrix should be intro-
duced. Unfortunately, as far as we know,
although the nlme library provides a large
set of classes of correlation structures (the
corStruct classes), it does not allow such a
modelling. To deal with this issue, an exten-
sion to our work would be to develop a new
corStruct class, integrating a more complex
correlation matrix.

Thus, the difficulty of dealing with complex
data involving the use of linear mixed effects
models is clearly illustrated and the need for
further evidence on the implications of this
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Table 1: REML estimates of the standard deviation components for the final model

Standard deviation of the random effects Residual standard deviation
Location Finger τ̂1 τ̂l τ̂3 τ̂4 σ̂l f

ExtP3 I 2.02 3.98× 10−4 0.50 2.13 0.47
M,R,L 2.02 3.98× 10−4 0.50 2.13 0.39

FlexP3 I 2.02 5.46 0.50 2.13 3.61
M,R,L 2.02 5.46 0.50 2.13 2.29

ExtP1 I 2.02 1.92 0.50 2.13 1.49
M,R,L 2.02 1.92 0.50 2.13 0.99

tool is demonstrated.
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Codes

Code 1: R code for fitting model M0 and plotting the residuals
fitM0 <- lme(F ~ finger*location, random=~1|individual, method="ML")
summary(fitM0)
resM0.std <- residuals(fitM0,type="pearson")
plot(fitM0,individual~resM0.std|location,abline=0,xlim=c(-5,5),xlab="Standardized

residuals")
plot(fitM0,individual~resM0.std|finger,abline=0,xlim=c(-5,5), xlab="Standardized

residuals")

Code 2: R code for fitting model M1 and plotting the residuals
fitM1 <- lme(F ~ finger*location,

random=list(individual=pdBlocked(list(pdIdent(~1),
pdIdent(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

method="ML")
resM1.std <- residuals(fitM1,type="pearson")
plot(fitM1,individual~resM1.std|location,abline=0,xlim=c(-5,5),

xlab="Standardized residuals")
plot(fitM1,individual~resM1.std|finger,abline=0,xlim=c(-5,5),

xlab="Standardized residuals")

Code 3: R code for fitting model M2

fitM2 <- lme(F ~ finger*location,
random=list(individual=pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

method="ML")

Code 4: R code for comparing models M0 M1 and M2

> anova(fitM0,fitM1,fitM2)
Model df AIC BIC logLik Test L.Ratio p-value

fitM0 1 14 3062.614 3122.696 -1517.307
fitM1 2 17 2559.554 2632.511 -1262.777 1 vs 2 509.0603 <.0001
fitM2 3 19 2536.623 2618.163 -1249.312 2 vs 3 26.9310 <.0001

Code 5: R code for fitting model M2.1

fitM2.1 <- lme(F ~ finger*location,
random=list(individual=pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form=~1|location),
method="ML",control=lmeControl(msMaxIter=1000))

Code 6: R code for comparing models M2 and M2.1

> anova(fitM2,fitM2.1)
Model df AIC BIC logLik Test L.Ratio p-value

fitM2 1 19 2536.623 2618.163 -1249.312
fitM2.1 2 21 2209.450 2299.573 -1083.725 1 vs 2 331.1733 <.0001

Code 7: R code for fitting model M2.2

Index<-(finger=="I")
Index[Index==TRUE]<-"I"
Index[Index==FALSE]<-"other"
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fitM2.2 <- lme(F ~ finger*location,
random=list(individual=pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form=~1|location*Index),
method="ML",control=lmeControl(msMaxIter=1000))

Code 8: Correlation between finger residuals from model M2.2

index.resM2.2.std middle.resM2.2.std ring.resM2.2.std little.resM2.2.std
index.resM2.2.std 1.000000000 0.44993429 0.05285808
0.002880021
middle.resM2.2.std 0.449934291 1.00000000 0.19787515
-0.054273560
ring.resM2.2.std 0.052858083 0.19787515 1.00000000
0.330040375
little.resM2.2.std 0.002880021 -0.05427356 0.33004037
1.000000000

Code 9: R code for fitting model M2.3

fitM2.3 <- lme(F ~ finger*location,
random=list(individual=pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form=~1|location*Index),
correlation=corSymm(form=~1|individual/trial),
method="ML", control=lmeControl(msMaxIter=1000))

Code 10: R code for comparing models M2.2 and M2.3

> anova(fitM2.2, fitM2.3)
Model df AIC BIC logLik Test L.Ratio p-value

fitM2.2 1 24 2196.181 2299.178 -1074.090
fitM2.3 2 30 2163.984 2292.731 -1051.992 1 vs 2 44.19657 <.0001

Code 11: Correlation between finger residuals from model M2.3

index.resM2.3.norm middle.resM2.3.norm ring.resM2.3.norm little.resM2.3.norm
index.resM2.3.norm 1.0000000000 0.4349577 0.07690754
-0.0009446519
middle.resM2.3.norm 0.4349576964 1.0000000 0.18661419
-0.1000402521
ring.resM2.3.norm 0.0769075435 0.1866142 1.00000000
0.3160102365
little.resM2.3.norm -0.0009446519 -0.1000403 0.31601024
1.0000000000

Code 12: Correlation between finger residuals from model M2.3

[1] "ExtP3"
index.ExtP3 middle.ExtP3 ring.ExtP3 little.ExtP3

index.ExtP3 1.00000000 0.29703108 0.01567086 0.11589476
middle.ExtP3 0.29703108 1.00000000 0.12379029 0.04456328
ring.ExtP3 0.01567086 0.12379029 1.00000000 0.44970726
little.ExtP3 0.11589476 0.04456328 0.44970726 1.00000000

[1] "FlexP3"
index.FlexP3 middle.FlexP3 ring.FlexP3 little.FlexP3

index.FlexP3 1.00000000 0.5020148 0.08159964 -0.1710437
middle.FlexP3 0.50201479 1.0000000 0.32596412 -0.1405854
ring.FlexP3 0.08159964 0.3259641 1.00000000 0.4255994
little.FlexP3 -0.17104373 -0.1405854 0.42559940 1.0000000
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[1] "ExtP1"
index.ExtP1 middle.ExtP1 ring.ExtP1 little.ExtP1

index.ExtP1 1.0000000 0.4922102 0.1277424 0.0731796
middle.ExtP1 0.4922102 1.0000000 0.1167627 -0.1922833
ring.ExtP1 0.1277424 0.1167627 1.0000000 0.1220772
little.ExtP1 0.0731796 -0.1922833 0.1220772 1.0000000

Code 13: Extract from the lme output for the final model
Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
2148.537 2276.61 -1044.268

Random effects:
Composite Structure: Blocked

Block 1: (Intercept)
Formula: ~1 | individual

(Intercept)
StdDev: 2.015483

Block 2: locationExtP3, locationFlexP3, locationExtP1
Formula: ~location - 1 | individual
Structure: Diagonal

locationExtP3 locationFlexP3 locationExtP1
StdDev: 0.0003979309 5.463777 1.922453

Block 3: fingerI, fingerM, fingerR, fingerL
Formula: ~finger - 1 | individual
Structure: Multiple of an Identity

fingerI fingerM fingerR fingerL
StdDev: 0.4971519 0.4971519 0.4971519 0.4971519

Block 4: locationExtP3:fingerI, locationFlexP3:fingerI, locationExtP1:fingerI,
locationExtP3:fingerM, locationFlexP3:fingerM, locationExtP1:fingerM,
locationExtP3:fingerR, locationFlexP3:fingerR, locationExtP1:fingerR,
locationExtP3:fingerL, locationFlexP3:fingerL, locationExtP1:fingerL

Formula: ~location:finger - 1 | individual
Structure: Multiple of an Identity

locationExtP3:fingerI locationFlexP3:fingerI locationExtP1:fingerI
StdDev: 2.131903 2.131903 2.131903

locationExtP3:fingerM locationFlexP3:fingerM locationExtP1:fingerM
StdDev: 2.131903 2.131903 2.131903

locationExtP3:fingerR locationFlexP3:fingerR locationExtP1:fingerR
StdDev: 2.131903 2.131903 2.131903

locationExtP3:fingerL locationFlexP3:fingerL locationExtP1:fingerL
StdDev: 2.131903 2.131903 2.131903

Residual
StdDev: 0.467283

Correlation Structure: General
Formula: ~1 | individual/trial
Parameter estimate(s):
Correlation:
1 2 3

2 0.498
3 0.082 0.217
4 0.005 -0.039 0.360

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | location * Index
Parameter estimates:

ExtP3*I ExtP3*other FlexP3*I FlexP3*other ExtP1*I ExtP1*other



-35- Modelling finger force produced from different tasks / C. Bazzoli et al

1.0000000 0.8353108 7.7366386 4.8954079 3.1937128 2.1329918
Fixed effects: F ~ finger * location

Value Std.Error DF t-value p-value
(Intercept) 8.644884 0.7714543 514 11.205958 0.0000
fingerM -1.393365 0.8019731 514 -1.737421 0.0829
fingerR -2.742242 0.8040684 514 -3.410458 0.0007
fingerL -3.677165 0.8044585 514 -4.570981 0.0000
locationFlexP3 16.632080 1.7004357 514 9.781070 0.0000
locationExtP1 6.084934 0.9522260 514 6.390220 0.0000
fingerM:locationFlexP3 1.585422 1.2000256 514 1.321157 0.1870
fingerR:locationFlexP3 -5.294868 1.2633332 514 -4.191188 0.0000
fingerL:locationFlexP3 -10.126682 1.2747899 514 -7.943804 0.0000
fingerM:locationExtP1 -2.174479 1.1202164 514 -1.941124 0.0528
fingerR:locationExtP1 -2.153727 1.1338847 514 -1.899424 0.0581
fingerL:locationExtP1 -0.107558 1.1364151 514 -0.094646 0.9246

Code 14: R code for contrast analysis
group <- gl(12,45,540,labels=c("ExtP3:I","ExtP3:M","ExtP3:R","ExtP3:L",

"FlexP3:I","FlexP3:M","FlexP3:R","FlexP3:L",
"ExtP1:I","ExtP1:M","ExtP1:R","ExtP1:L"))

library(MASS)
M.location<-cbind(

c(1,0,0,0,-1,0,0,0,0,0,0,0), # ExtP3/FlexP3,I
c(0,1,0,0,0,-1,0,0,0,0,0,0), # ExtP3/FlexP3,M
c(0,0,1,0,0,0,-1,0,0,0,0,0), # ExtP3/FlexP3,R
c(0,0,0,1,0,0,0,-1,0,0,0,0), # ExtP3/FlexP3,L
c(1,0,0,0,0,0,0,0,-1,0,0,0), # ExtP3/ExtP1,I
c(0,1,0,0,0,0,0,0,0,-1,0,0), # ExtP3/ExtP1,M
c(0,0,1,0,0,0,0,0,0,0,-1,0), # ExtP3/ExtP1,R
c(0,0,0,1,0,0,0,0,0,0,0,-1) # ExtP3/ExtP1,L
)

contrasts(group)<-t(ginv(M.location))
fitM2.3.REML.location <- lme(F ~ group,

random=list(individual=
pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form=~1|location*Index),
correlation=corSymm(form=~1|individual/trial),
method="REML", control=lmeControl(msMaxIter=1000))

summary(fitM2.3.REML.location)

M.finger<-cbind(
c(1,-1,0,0,0,0,0,0,0,0,0,0), # I/M, ExtP3
c(0,0,0,0,1,-1,0,0,0,0,0,0), # I/M, FlexP3
c(0,0,0,0,0,0,0,0,1,-1,0,0), # I/M, ExtP1
c(0,1,-1,0,0,0,0,0,0,0,0,0), # M/R, ExtP3
c(0,0,0,0,0,1,-1,0,0,0,0,0), # M/R, FlexP3
c(0,0,0,0,0,0,0,0,0,1,-1,0), # M/R, ExtP1
c(0,0,1,-1,0,0,0,0,0,0,0,0), # R/L, ExtP3
c(0,0,0,0,0,0,1,-1,0,0,0,0), # R/L, FlexP3
c(0,0,0,0,0,0,0,0,0,0,1,-1) # R/L, ExtP1

)
contrasts(group)<-t(ginv(M.finger))
fitM2.3.REML.finger <- lme(F ~ group,

random=list(individual=
pdBlocked(list(pdIdent(~1),

pdDiag(~location-1),
pdIdent(~finger-1),
pdIdent(~location:finger-1)))),

weights=varIdent(form=~1|location*Index),
correlation=corSymm(form=~1|individual/trial),
method="REML", control=lmeControl(msMaxIter=1000))

summary(fitM2.3.REML.finger)
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Code 15: Extract of the R output for contrat analysis for comparing each finger force intensity
between locations (group1
Fixed effects: F ~ group

Value Std.Error DF t-value p-value
(Intercept) 12.741371 0.7462516 514 17.073827 0.0000
group1 -16.632080 1.7004340 514 -9.781079 0.0000
group2 -18.217502 1.6479859 514 -11.054404 0.0000
group3 -11.337212 1.6479859 514 -6.879435 0.0000
group4 -6.505398 1.6479859 514 -3.947484 0.0001
group5 -6.084934 0.9522274 514 -6.390211 0.0000
group6 -3.910455 0.9369387 514 -4.173651 0.0000
group7 -3.931207 0.9369387 514 -4.195799 0.0000
group8 -5.977376 0.9369387 514 -6.379688 0.0000
group9 2.927701 0.6237270 514 4.693882 0.0000
group10 -9.304134 0.6694338 514 -13.898513 0.0000
group11 -0.337429 0.6151191 514 -0.548558 0.5835

Code 16: Extract of the R output for contrat analysis for comparing nearby finger force intensities
for each location (group1
Fixed effects: F ~ group

Value Std.Error DF t-value p-value
(Intercept) 12.741371 0.7462530 514 17.073797 0.0000
group1 1.393365 0.8019732 514 1.737421 0.0829
group2 -0.192057 0.9288755 514 -0.206763 0.8363
group3 3.567844 0.8231851 514 4.334194 0.0000
group4 1.348877 0.8026559 514 1.680517 0.0935
group5 8.229167 0.9060900 514 9.082063 0.0000
group6 1.328125 0.8206804 514 1.618322 0.1062
group7 0.934923 0.8020522 514 1.165663 0.2443
group8 5.766737 0.8875402 514 6.497438 0.0000
group9 -1.111247 0.8168230 514 -1.360450 0.1743
group10 2.733225 1.1135839 514 2.454440 0.0144
group11 18.614637 2.3509517 514 7.917916 0.0000
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