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Multivariate control charts can be used effectively to monitor the quality of complex processes with several 
critical variables simultaneously. However, when the covariance matrix has large dimension in comparison to 
the number of runs available for parameter estimation, these charts can perform poorly. We incorporate prior 
information about the covariance matrix in which the number of parameters is reduced to just two. We con-
sider a passivation process for semiconductor manufacturing, where each of the variables represents a value at 
a specific location in a passivation tube, and because of the interaction between the plasma and the reactant 
gases flowing down the tube, the correlation among the variables might decay with distance between these loca-
tions. Moreover, the variability at the locations might be taken equal, further reducing the number of parame-
ters. We use a Bayesian method to construct the multivariate control chart, and a statistic, analogous to Hotel-
ling's 2T , is used for charting. 
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Introduction
 
Statistical process control has been applied with marginal 
success in the semiconductor industry. This may be, in 
part, due to a heavy reliance on univariate control chart 
practices when the quality of many production processes 
is characterized by a number of variables which may be 
highly correlated. When the data are correlated, the uni-
variate charts are not as sensitive to out-of-control values 
as the multivariate charts which incorporate the correla-
tion. It is, therefore, pertinent to use multivariate control 
charts to perform statistical process monitoring for such 
processes. However, the dimensions of the covariance 
matrix for the variables can expand rapidly for a complex 

process, and with a small number of runs, it can be diffi-
cult to efficiently estimate the covariance matrix. We 
describe a new method which incorporates prior informa-
tion about the parsimony of the covariance matrix. In 
particular, we consider applications in which the covari-
ance matrix is reduced to just two parameters, and a 
Bayesian predictive approach is used to construct the 
multivariate control chart. 
 
There are many semiconductor manufacturing processes 
that may induce a covariance structure that conforms to 
the parsimonious covariance that we are proposing (cor-
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relation that degrades with distance in space). Some ex-
amples of these are an LPCVD (low pressure chemical 
vapor deposition) reactor that is used for the deposition 
of polysilicon or nitride, or a PECVD (plasma enhanced 
chemical vapor deposition, Engle 1980) reactor for the 
deposition of nitride or oxide. To further illustrate this, 
we consider a passivation process for semiconductor 
manufacturing, where each of k variables (measures of 
deposition) represents a value at a specific location in a 
passivation tube, and because of the interaction between 
the plasma and the reactant gases flowing down the tube, 
the correlation among the variables might decay with 
distance between these locations. Moreover, taking equal 
variability at the locations might further reduce the num-
ber of parameters. Diffusion processes, which would in-
clude oxidation and annealing to drive dopants into sili-
con substrates, constitute another step that may be ex-
plained by our method. Finally, single wafer processes 
may be another application for our method; wafer etching 
typically produces radial patterns on the wafer that in-
duce some form of spatial correlation across the wafer.  
 
Hotelling (1947) pioneered the work on multivariate 
control charts. In particular, the values plotted on the 
control charts are usually statistics related to his well-
known 2T  statistic. His work has led to several ground-
breaking applications of multivariate methods to indus-
trial problems. Indeed, there are many examples of multi-
variate processes where the use of separate individual 
charts would not have detected out-of-control conditions; 
see, for example, Ryan (1989) and Montgomery (1991). 
If there is prior information about the form of the covari-
ance matrix, the performance of these multivariate charts 
can be improved substantially. 
 
Multivariate control charting is an area of much research 
activity. Sullivan and Woodall (1996) compared a num-
ber of classical multivariate control charts for individual 
observations, and showed that the procedure of pooling 
all data to estimate the mean vector and the covariance 
matrix is not effective in detecting a shift in the mean 
vector because the covariance matrix is badly estimated. 
Thus, they considered several alternatives to estimate the 
covariance matrix. Our method differs from theirs in that, 
with hindsight, we can estimate the covariance matrix 
efficiently if there is parsimony. Nonparametric ap-
proaches are described by Liu (1995) in which unlike in 
standard approaches (e.g., Tracy et al. 1992) both loca-
tion and scale shifts are detected. Also Liu and Tang 
(1996) describe control charting using bootstrap methods. 
However, our data can be modeled using a multivariate 
normal distribution, and we desire to incorporate prior 
information about the covariance matrix. In addition, the 
special case of multivariate statistical process control with 

several identical process streams (i.e., commensurate 
measurements for the same multivariate observation) is 
similar in spirit to our applications (see, for example, 
Runger et al. 1996). 
 
Alt (1982) described two distinct phases for constructing 
control charts. The first phase, screening, is retrospective, 
and in this phase, control limits are constructed with his-
torical data from a stable process. It is assumed that the 
principles of rational subgroups are used to minimize the 
effects of assignable causes within subgroups and to 
maximize such effects between subgroups. The second 
phase, monitoring, is prospective, and in this phase, the 
control limits, which were obtained from historical data, 
are used to detect departures from the process standards 
as future subgroups are taken. The correlation structure 
of the data should be taken into consideration in both of 
these phases. 
 
Tracy, Young, and Mason (1992), henceforth referred to 
as TYM, provide a simple description of a standard 
method for constructing multivariate control chart. Let 
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F -distribution to perform screening and moni-
toring respectively. 
 
In contrast our method, which uses a predictive approach, 
is based on a simple idea. Given sample data the predic-
tive distribution of the next observation is computed, and 
it is used to derive the control limits when the process is 
in control using a charting statistic analogous to Hotel-
lings’ 2T  statistic. When further observations are taken 
from the process and if the observed charting statistic 
falls outside the control limits, the process is said to be 
out of control. Furthermore, in principle, normality is not 
required to execute this method. However, like TYM we 
study a multivariate normal process. 
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For both methods the condition  can be a nuisance. 
For example, for a typical application with k=5, there are 

 parameters to be estimated, and if n is not 
much larger than k, the parameters 

kn >

20=3)/2( +kk
μ  and even worse Σ  

cannot be estimated efficiently. See Boyles (1996) for an 
extensive discussion of this problem. If the application 
involves only commensurate variables, one can hope to 
reduce the number of parameters in the covariance ma-
trix by utilizing the physical properties of the process. 
 
Unfortunately, with the parsimonious covariance matrix 
the distributions of  and iQ

2T  are not as simple as stated 
by TYM. Thus, while this parsimony in reducing the 
number of parameters may lead to improved precision, 
there is some loss in simplicity. Fortunately, the gain in 
precision will outweigh the loss in simplicity. Boyles 
(1996) demonstrated increased precision in the parsimo-
nious covariance structure which occurs in applications 
with a multidimensional lattice (a grid of points in a co-
ordinate system). He also pointed out that there is no 
exact distribution for setting control limits and proposed 
an approximation to the distribution of Hotelling’s 2T  
charting statistic. We provide essentially an exact distri-
bution. 
 
Using a sampling based method, it is conceptually simple 
to obtain the distribution of the charting statistic under 
the parsimonious covariance structure, together with any 
useful prior information that may be obtained from his-
torical data. The charts are constructed using the Me-
tropolis-Hastings algorithm (Chib and Greenberg 1995) 
through a statistic analogous to  Hotelling's 2T . During 
the screening phase the control limits are constructed 
using a cross-validation and future monitoring is done 
using the analogous Hotelling's 2T  statistic with the con-
trol limits established from the cross-validation. 
 
Thus, we describe a Bayesian multivariate chart appropri-
ate for the passivation process in the semiconductor in-
dustry. The rest of the paper is organized as follows. In 
the next section we describe the semiconductor data and 
a preliminary data analysis. In the following section we 
describe the methodology; in particular, the Bayesian 
model and the new charting statistic are discussed. We  
then describe control charting in our application on the 
semiconductor data. We also describe a simulation study 
to assess the performance of our method and to compare 
it with the TYM method. The last section contains con-
clusions. In this paper, we omit the technical details 
which can be obtained from Nandram and Ramirez 
(2005). 
 
 

Semiconductor Data  
  
The computer industry has made substantial progress in 
technology and capability in the past twenty years; com-
plex computations that used to be accomplished by a 
computer that filled an entire room can now be done us-
ing a laptop computer. One of the primary reasons the 
computer industry has advanced so fast is due to the 
technological advances in silicon based integrated circuits. 
An integrated circuit is smaller than a dime, and can con-
tain millions of transistors with metal lines thinner than a 
human hair. These metal lines carry high density current. 
It is very difficult to manufacture integrated circuits; a 
typical process consists of hundreds of steps. Passivation 
is one such step and has motivated this work. The pas-
sivation process is performed to deposit an insulating, 
protective layer over the entire device after metalization. 
The passivation layer can be deposited onto the wafers in 
a furnace (tube) that uses plasma-enhanced chemical 
vapor deposition. A graphite boat in the tube, which was 
used for our application, is configured to hold 96 4-inch 
wafers. 
 
The passivation tube is partitioned into zones in both the 
width and the length of the tube (see Figure 1). There are 
12 rows that run down the length of the passivation tube 
with 5 pairs of rows that run back-to-back. Each row can 
hold 8 wafers and each wafer is placed with its back 
against the slat in an upright position. Nitrous oxide, si-
lane, and diluent are then pumped into the tube where 
the wafers are loaded, gas flows parallel to the wafers' 
surface, and finally a plasma is ignited. The plasma energy 
breaks down the reactant gases, allowing chemical vapor 
deposition to occur on the wafer surface, thus forming the 
passivation layer. Monitor or bare silicon wafers are stra-
tegically placed at three locations in one of the middle 
rows near the gas source, center, and door in the tube. 
 

 
Figure 1.  Location of the wafers in the passivation tube 
with gas pumped in 
 
At the end of each run, five thickness measurements are 
taken from the top, center, left, right, and bottom posi-
tions of each of the three wafers. The quality of the proc-
ess is assessed by studying the variability of these film 
thickness measurements. A , which relies ©NanoSpec
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on the interference of light, is used to measure the thick-
ness of the film. The equipment is capable of measuring 
film thicknesses from 100 angstroms to 50,000 angstroms 
(1 angstrom is  centimeters). The Nanospec is a 
very reliable instrument for measuring commercially 
prime (monitor) wafers. However, there may be some 
difficulties in taking measurements if extreme variation in 
surface conditions of the underlying substrate exists. Also, 
the interaction between the plasma and gas flow down 
the tube, along with temperature gradients, causes varia-
tion in film properties, such as film thickness. 

8101 −×

 
The average of the five measurements on each wafer is 
usually studied. However, the three wafer averages that 
represent the three tube locations are usually highly cor-
related. This is expected because all the wafers in the 
tube are simultaneously exposed to the same conditions 
for each run. Therefore, it is sensible to consider the 
three measurements as a three dimensional vector. It is 
believed that, for all practical purposes, the variability at 
the three locations can be taken equal, and that the cor-
relation among the locations decay with distance between 
the locations. However, the thicknesses of the coating at 
the three locations are expected to be different. 
 
The process is monitored by taking a number of runs in 
time. The objective is to use the thickness data to con-
struct the control limits for the process and then to moni-
tor the future of the process using the established control 
limits under the prescribed covariance structure. 
Our data set, collected by a US based semiconductor 
manufacturer, consists of 26 runs from a passivation tube 
where each run consists of the average film thicknesses 
on 3 monitor wafers located at the source, center and 
door of the passivation tube (i.e., k=3 and n=26). For 
convenience, the original measurements were divided by 
1000 for our analysis. We are unable to present the origi-
nal data here because of confidentiality issues. However, 
in Table 1 we have provided a masked data set which can 
be used for exploration. 
 
Thus, we present a preliminary analysis of the 26 three-
dimensional measurements. The sample pairwise correla-
tion between the wafer averages at the source and center 
is 0.89, between the center and the door is 0.87, and be-
tween the source and the door is 0.74, indicating that the 
population correlation matrix has the requisite structure. 
The sample variance at the source, center, and door are 
0.64, 0.41, and 0.38, respectively; the average estimated 
variance is 0.48. These estimated variances indicate that 
the corresponding population variances can be taken 
equal. 
   
 

Table 1:  Masked data at the source, center 
and door of the passivation tube 

Source Center Door 
2.05 2.07 2.07 
2.10 2.10 2.07 
2.05 2.05 1.98 
2.07 2.03 1.92 
2.05 2.04 1.89 
2.06 2.07 2.09 
2.08 2.05 2.04 
2.02 2.00 1.72 
2.10 2.09 2.12 
2.57 2.52 2.40 
2.39 2.20 2.09 
2.17 2.17 2.12 
2.31 2.34 2.30 
2.22 2.30 2.28 
2.09 2.08 2.00 
2.29 2.39 2.36 
2.23 2.32 2.28 
2.21 2.28 2.22 
2.15 2.12 2.18 
2.13 2.21 2.21 
2.07 2.12 1.87 
2.16 2.14 2.15 
2.10 2.07 2.02 
2.09 2.09 1.99 
2.15 2.17 2.14 
2.18 2.24 2.21 

Note: These data give answers different from the 
original data. 

 
In addition, we perform a preliminary analysis to deter-
mine differences between the locations in the tube and to 

get rough estimates of  and 
2σ ρ  using a repeated 

measures model (i.e., the correlation is the same between 
any two locations). Letting  denote the components 

of , we used PROC MIXED in SAS to fit the model  
ijy

iy
   ,= ijjiij ey +++ νκθ
where  ~  and independently 

 ~ with fixed effects 
nκκκ ,,, 21 K )(0, 2δN

nkeee ,,, 1211 K )(0, 2σN jνθ +  at lo-

cation . Then, the means of  are estimated 

by 10.78, 10.82 and 10.53 for the pump, center and the 
door respectively. The estimate of the common variance 
of  is 0.478 at the source, center and door and the es-

timate of the correlation is 0.816. Also, a test of 

1,2,3= , jj ijy

ijy

321 == ννν  gives a p-value of .001, indicating that the 
thicknesses at the three locations are significantly differ-
ent. 
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We also fitted the full covariance matrix (i.e., the TYM 
model) using the method based on the quantiles of a beta 
distribution described by Rencher (1995, Sec. 4.4.2). The 
quantile plot shows six points departing from normality in 
which runs 8, 10, 11 and 21 are included. Both tests for 
skewness and kurtosis reject normality with all 26 obser-
vations. When we repeated the test with 22 runs, about 
three points in the quantile plot departed from linearity, 
and the test for kurtosis rejected normality. Next, we pre-
sent our methodology and apply it to these data. 
 
Bayesian Methodology 
 
In this section, we show how to construct a Bayesian mul-
tivariate control chart. First, we describe a model appro-
priate for commensurate measurements with a parsimoni-
ous covariance structure. Second, we use these samples 
to construct a Mahalanobis distance analogous to  Hotel-
ling's 2T  which, in turn, is used to obtain the control 
chart (i.e., the lower control limit, center line and upper 
control limit). Screening is done using a Bayesian cross-
validation. Again, note that the technical details are pre-
sented in Nandram and Ramirez (2005). 
  
Modeling  
 
Quite generally we consider k measurements taken at a 
particular time point. (The k measurements constitute a 
k-dimensional vector.) We also consider n historical runs 
to construct the control charts. We incorporate prior 
information about the parsimony of the covariance ma-
trix using a Bayesian model. 
 
A multivariate normal distribution is not an unreasonable 
candidate distribution for our measurements. Thus, start-
ing with multivariate normality for the measurements, we 
take iid  
     Σ,|,,, 21 μnyyy K  ~ ),,( ΣμN                    (1) 

where  is the mean vector and 

 is the covariance matrix with Γ  equal to the 
correlation matrix (assuming equal variability at each 
position in the tube). 

'
k ),,,(= 21 μμμμ K

ΓΣ 2=σ

 
With appropriate prior information, one can choose the 
correlation matrix to have a reduced number of parame-
ters. An application of particular interest to us is the one 
in which )(= 'jj

ρΓ  and  

  ;  1<<0 ,,1,2,=, ,|= | ρρρ kjj ''jj
'jj

K
−

this suggests that locations further away have smaller cor-
relations. 
 

Although our model is specific, our method could be ap-
plied in the same spirit to other correlation structures. 
For example, a very simple covariance structure arises in 
a equicorrelated and equivariance situation where 

 with ))(1(= 2 JI ρρσ −+Σ I  the  identity matrix 
and  the 

kk ×
J kk ×  matrix of ones. A more complicated 

situation can arise if the  element of 'jj Σ  is 

. Here the vari-

ances are different and correlation falls off with distance, 
and therefore, our specific model is a special case of this 
more general model. But even in this more general situa-
tion there could be significant parsimony with even a 
moderate number of variables. 

1<<0 ,,1,2,=, ,|| ρρσσ kjj ''jj
'jj K

−

 
In any application the assumption of multivariate normal-
ity, together with our proposed covariance structure, 
must be assessed. Note that the results of Tracy et al. 
(1992) do not apply to this model. In particular, if the 
parsimonious covariance matrix is used, the sample co-
variance matrix must also have this same pattern and the 
distributions used for charting are not as described in the 
review of the first section of this paper. 
 
For priors, we take 1=)(μp ,  and 22 )( −∝σσp

1<<0 1,=)( ρρp ; in this case the performance should 
be similar to the one based on maximum likelihood esti-
mation if one can carry out an accurate analysis. 
 
Under the Bayesian model specified by (1) and the prior 
distributions just defined we will construct a statistic 
analogous to Hotelling's 2T  for control charting. The 
posterior distribution of this statistic is estimated using a 
sampling based method through the Metropolis-Hastings 
sampler (see Nandram and Ramirez 2005), and the con-
trol limits are obtained using the appropriate percentiles 
of the charting statistic. 
 
The Charting Statistic  
 
Let  be the set of all parameters and 

 be the set of all data. Let  be the vec-

tor of the k  measurements of a future run. Then our 
charting statistic is  

),,(= 2 ρσμΩ
),,(= 1 nyyy K fy

      (2) )),|(())|(())|((= 1 yyEyyycovyyEyD fff
'

fff −− −

where  and  are the posterior mean 

and covariance of . Given Ω  we assume that  ~ 
)|( yyE f )|( yycov f

fy fy
),( Σμ  and independent of the past runs y . Then, it is 

easy to show that E ,)|(E=)|( yyy f μ   

     ).|()|(=)|( ycovyEyycov f μ+Σ                (3) 
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More importantly, the posterior predictive distribution of 

 given  is  fy y
     .             (4) .)|()|(=)|( ΩΩΩ∫Ω dyyfyy ff ππ
Note that the posterior distribution of  is needed to 
compute the posterior distribution of  in (2). Because 

the posterior distribution of  is intractable, the pos-
terior distribution of  is also intractable. 

y|Ω

fD
y|Ω
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Under the model it follows from Bayes' theorem that the 
joint posterior distribution )|( yΩπ  is given by 
     )|()(=)|( 0 yy ΩΩΩ lππ                             (5) 
where  is the prior distribution given by 

 and  is the likelihood function  
)(0 Ωπ
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. (See Appendix A of Nandram and 

Ramirez 2005 where the likelihood function is derived.) 
Thus, the posterior distribution 
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1
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jij
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yc μ−∑∑
−

)|( yΩπ  does not exist in 
closed form since the proportionality constant (i.e., the 
integral of (5) over the -dimensional space) can-
not be obtained analytically, and can be difficult to find 
using numerical integration. Samples from the posterior 
distribution in (5) are required to construct the posterior 
distribution of the charting statistic. 

2)( +k

 
Using the composition method (e.g., Tanner 1993) in (4) 
we obtain an estimate of the posterior distribution of  

in two steps (a) samples of the posterior distribution of 
 are drawn and (b) for each Ω  drawn, a  is drawn 

from 

fy

Ω fy
),( ΣμN . While step (b) is obtained in a straight-

forward manner, step (a) is much more difficult. However, 
to obtain  in (2) we must first obtain  and 

 in (3) which are obtained in an obvious 

manner from the samples drawn in (b). Step (b) is ac-
complished side-by-side with step (a), but, of course, it is 
not a part of the sampling process in which the posterior 
distribution of Ω  is obtained; see Nandram and Ramirez 
(2005). By steps (a) and (b), we get samples from the pos-
terior distribution of  in (2). 

fD )|( yyE f

)|( yycov f

fD
 

Finally, for control charting we obtain the  percen-
tile, 50th percentile and  percentile of the  

values. (Tracy et al. 1992 took 

thα100
th)100(1 α− fD

0.01=α .) Data screening 
for outliers is performed by a Bayesian cross-validation; 
see Nandram and Ramirez (2005) for details. 
 
Henceforth, for convenience we will call this new method 
the NR method, and we will denote the charting statistic 

 by . 
fD NRT

 
We screen the data of n runs for outliers by performing a 
Bayesian cross-validation. The ith run is simply deleted, 
and it is treated as a future value. Then, the Di as in (2) 
are computed for all runs, deleting each in turn. Values of 
Di that are much different from the others are suspect 
and should be removed from the data to establish the 
control limits. This technique is analogous to the one 
described by Gelfand et al. (1992) to obtain diagnostics 
for Bayesian models; see Nandram and Ramirez (2005). 
 
To monitor the manufacturing process in the future we 
simply calculate a single Df for each future run which 
becomes known and compare this value of Df with the 
already established control limits. 
 
Data Analysis and the Semiconductor Data 
 
Now, we apply our methodology to the semiconductor 
data. Specifically, we show how to perform multivariate 
control charting, and we describe a simulation study to 
assess the performance of our method. 
 
Analysis of the Semiconductor Data  
 
First, we perform a brief goodness of fit procedure. Using 
standardized deleted residuals, we first assess the fit of the 
Bayesian model with the parsimonious covariance using 
cross-validation as described by Gelfand et al. (1992). Let 

 denote the vector of all runs when the ith ( ) run is 

deleted,  the posterior mean, 

 the posterior covariance of , and 

 Cholesky's decomposition of 

)(iy iy
)|(= )(ii yyEv

)|(= )(ii yycovB )(| ii yy
CCB '=1− 1−B  with  an 

upper triangular matrix. Then defining the 
standardized residuals  are approximately independent 

and normally distributed a posteriori. Figure 2(a) shows 
the normal probability plot of the standardized residuals 
for all runs. There are five points which deviate from the 

 line. Two of the largest residuals are associated with 
run 8 with residual values -2.84 and 2.88, and the other 
three largest residuals are associated with runs 10, 11 and 
21. (Run 8 has the smallest measurement at the door.) 

C
),(= vyCz ii −

ijz

o45
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When we omitted all four runs associated with these five 
residuals, we obtained a much improved normal probabil-
ity plot (Figure 2(b)). (Note that there are 78 points in 
Figure 1(a) and 66 points in Figure 2(b).) 
 

 

 
Figure 2.  Normal probability plot of standardized residuals 
including the expected 45 degree line and the 95% point-
wise critical bands   
 
Figure 3 shows the control charts based on  and . 
Notice that the out-of-control runs are different for the 
two charting statistics. Of course, the limits based on 

 are larger than those based on . Figure 4 shows 
the control chart with the one out-of-control run indi-
cated by  in Figure 3 removed. Now there are three 
out-of-control runs which are indicated by both charting 
statistics. It is comforting that the two charts for  
and  look similar with the limits for  being larger. 

TYMT NRT

TYMT NRT

NRT

TYMT
NRT TYMT

 
On removing runs 8, 10, 11 and 21 Figure 5 indicates 
that the process is in control. The process engineer indi-
cated that these outliers were probably due to poor elec-
trical contact of the wafers to the boat in the tube. Thus, 
the control limits are the established limits which will be 
used for future monitoring. For  the control limits 
are 0.12, 2.71, 16.6  and for  the control limits are 

0.10, 2.21, 12.5. The posterior means of  and  
are 2.85 and 3.85 respectively. Not surprisingly the poste-
rior standard deviations of  and  are 2.44 and 

3.57 respectively, an increase of 46% of  over . 

TYMT
NRT

NRT TYMT

NRT TYMT
TYMT NRT

 

 

 
Figure 3.  Control charts for the NR method (bottom panel) 
versus the TYM method (top panel) 
 
Finally, in Figure 6 in pretense we consider the 26 runs as 
future runs with the established control limits. This is the 
same as Figure 3 with the limits shown in Figure 4. Thus, 
the out-of-control runs are different for the two methods. 
 

 

 
Figure 4.  Control charts for the NR method (bottom panel) 
versus the TYM method (top panel) without run 8   
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Figure 5.   Control charts for the NR method (bottom panel) 
versus the TYM method (top panel) without runs 8, 10, 11 
and 21 
 

 

 
Figure 6.   Control charts for the NR method (bottom panel) 
versus the TYM method (top panel) for the 26 runs after 
establishing control (i.e., without runs 8, 10, 11 and 21) 
 
A Simulation Study: Detection of Out-of-control Runs  
 
In this section we use simulated examples to study how 
well the NR method can detect out-of-control values as 
compared with TYM. In the simulated examples the 
components of μ  are all set at zero for convenience, and 
the covariance matrix has specified forms (see below). 
Then, we generated a random sample of  -
variate normal random variables with the specified mean 
vector and covariance matrix. (There are  runs in 

our application.) In all examples we used noninformative 
priors. We compare the average run length for the proc-
ess under the NR model and the TYM model when there 
is an out-of-control process shift. In our simulated exam-
ples we took , 

26=n k

26=n

1=2σ .80=ρ , 0==== 21 kμμμ K  

for . Note, in particular that the data are 
generated under the parsimonious model. 

,82,3,= Kk

 
Let LCL and UCL denote the )%100(1 α−  control lim-
its for either the NR method or the TYM method. We 
consider a known shift of iδ  for the  component of 
the mean vector for the stable process, and we represent 
the multivariate vector of shifts by 

thi

),,(= 1 kδδδ K . 

Then, for a shifted observation, denoted by , fy δ−fy  

follows the original model  
      Σ− ,| μδfy  ~ ),,( ΣμN                             (6) 

where Σ  refers to the full covariance matrix for TYM or 
the reduced covariance matrix for NC. Then, the poste-
rior distribution of δ−fy  is  

     )),|((=)|( Σ−− μδδ ff ypEyyp               (7) 

where the expectation is with respect to the posterior 
distribution of μ  and Σ  given  obtained from the Me-
tropolis-Hastings algorithm. 

y

 
We computed the average run length (ARL) when there 
is a shift of δ . Let  be the number of runs required for 
the process to go out of control (i.e, for the process to go 
outside the interval (LCL, UCL)). Then the ARL is given 
by  

N

,))|((=)),|((= ΩΩ NEEyNEEARL  

where . But given Ω ,  has a geomet-
ric distribution with probability  depending on 

),,(= 2 ρσμΩ N
)(Ωp Ω  

with expectation . Thus,  1)( −Ωp
                                 (8) ).|)((= 1 ypEARL −Ω
 
We obtain a Rao-Blackwellized estimator of the ARL as 
follows: for each iterate )(mΩ , we draw 5,000 values 

 under the shifted distribution and count the 

proportion out of control, denoted by  for the 
mth iterate. Then the Rao-Blackwellized ARL is given by  

50001 ,, yy K

)( )(mp Ω

  ,)( 1)(

1=

1 −− Ω∑ m
M

m

pM

where M=2,000 is the number of iterates from the Me-
tropolis-Hastings algorithm. Increasing the sample size to 
10,000 showed virtually no difference in the point esti-
mates. We use a similar method for TYM. 
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Others have used a Markov chain approximation to de-
termine the ARL of a multivariate statistical process con-
trol chart; see, for example, Runger and Prabhu (1996). 
Our method for computing the ARL needs essentially no 
approximation. 
 
We consider two cases. In the first case, we perturbed all 
k variables in the same way and calculated the probability 
of detecting the stated shift. We study shifts of iδ  (σ  is 
set at 1) of 0.0 to 3.5 by steps of 0.25 for 2 to 8 variables. 
In the second case, we perturbed only the first of the k  
variables. 
 
For the false alarm rate (i.e., the out-of-control probabil-
ity for an in-control process) with reasonably small error, 
we obtain the .02 nominal value for both methods. When 
all variables are perturbed at 0 shift (i.e., in control), the 
ARLs range from 49-66 for the NR method and 57-59 for 
the TYM method. There is no pattern as the number of 
variables increases from k=2 to k=8. Except for k=4 
when ARL=66 and k=7 when ARL=49, for all values of 
k the ARLs for NR and TYM are very similar. The NR 
ARLs are very similar when all components are perturbed 
to when only the first component is perturbed, but the 
TYM ARLs are slightly larger when only the first compo-
nent is perturbed, ranging from 61-64. These are ap-
proximately in concordance with the .02 nominal value. 
 
In Table 2 we present the results for shifts of 

 sigma. It is not surprising that 
for k=2 the two methods are very similar for both cases. 
In general the ARLs for TYM are much larger than those 

for NR. The exceptions are for k=5 and case 2 at shifts 
1.25 and beyond but the differences are not alarming. At 
the same value of k for case 1 at shift 1.25 compare 29 
and 50 and at shift 1.5 compare 20 and 44. In many ex-
amples the ARLs for NR are less than half those for TYM. 
For k=6, 7 or 8 and for both cases the NR method is sub-
stantially better than the TYM. For example for k=8 and 
any case the ARL for the NR method is less than a quar-
ter of the ARL for the TYM method. Observe that when 
only the first variable is shifted, the ARLs are smaller. 
The NR method is expected to perform better than the 
TYM method as the number of variables increases be-
cause the number of parameters for TYM method in-
creases dramatically but increases only by one for each 
additional variable for the NR method. 

2.5 2.0, 1.5, 1.25, 1.0, 0.5,

 
Conclusion 
 
In this paper, our main contribution is in screening and 
monitoring multivariate semiconductor data in which it is 
likely that there is parsimony in the covariance. In par-
ticular, we have introduced a Bayesian cross-validation 
method into statistical process control, and we have 
shown that it is feasible to reduce the number of parame-
ters in a k -dimensional covariance matrix to just two 
parameters.  
 
This structure with a reduced covariance matrix is suit-
able not only for statistical process control for semicon-
ductor manufacturing, but it may also be appropriate for 
data structures arising in areas such as agriculture, geosta-
tistics and image analysis. 

 
 

Table 2:   Comparisons of ARLs by number of variables, case, shift and method 
  Shift 
  0.5 1.0 1.25 1.5 2.0 2.5 

k Case NR TYM NR TYM NR TYM NR TYM NR TYM NR TYM 
2 1 50 53 38 38 28 27 19 18 8 8 4 4 
 2 47 47 20 18 10 9 5 5 2 2 1 1 

3 1 52 56 34 40 23 27 14 17 6 6 3 3 
 2 48 55 21 33 11 20 6 11 2 4 1 2 

4 1 56 57 32 42 21 28 13 16 5 6 3 3 
 2 54 57 25 33 15 17 8 9 3 3 2 2 

5 1 52 59 38 58 29 50 20 44 9 21 4 9 
 2 48 59 25 26 15 11 9 6 3 2 2 1 

6 1 56 61 40 60 28 52 18 40 7 16 3 6 
 2 55 62 32 58 19 46 11 30 4 11 2 4 

7 1 42 62 24 64 16 57 10 43 4 16 2 6 
 2 40 61 20 66 12 65 7 56 3 28 2 12 

8 1 53 63 38 71 27 71 17 68 7 38 3 17 
 2 51 64 32 72 20 68 12 61 4 27 2 10 
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Although the TYM method is the simplest among the 
classical methods, our example illustrates that one cannot 
apply the TYM method naively. In fact, both the TYM 
and the NR methods need careful model checking. Our 
model fits better in our example. The NR method is supe-
rior in detecting all shifts as compared to the TYM 
method. While the difference is smaller for shifts of 0.5 
sigma or so, this difference is substantial for larger shifts 
and larger number of variables.  
 
We have shown that when the NR model holds, there is 
substantial improvement over the TYM method. In par-
ticular, our method is able to detect out-of-control values 
faster than the TYM method. This is true for all shifts 
and any number of variables, more so for larger shifts and 
larger number of variables. Specifically, this is beneficial 
for the passivation process in the semiconductor industry. 
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