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For a period of time, professors from the Cleveland State University worked closely with the City of Cleveland 
Police Department. This partnership resulted in access to police records cataloging all emergency 911 calls for 
the city since 1995.  Here, we describe forecasting approaches that can be used by the Police Department based 
on hourly 911 calls in the years 2001 to 2003 throughout the city during peak call time: the third shift during 
summer months.  This case study is appropriate for class discussions in advanced courses in statistics to explore 
the application of time series analysis techniques. 

 
 
 
Introduction 
 

                                                 
1 The authors acknowledge the assistance of Babson College students Tim Consilvio, Mark Dayvie, and Michael Perkins in 
cleaning data and exploring forecasting models. 

The city of Cleveland, Ohio is a metropolitan area 
located on the southern shores of Lake Erie.  At the time 
of the 2000 census, the city had 478,403 residents and 
the city population had been declining steadily for the 
last fifty years from a 1950 high of 914,808 residents.  
With dwindling tax revenues, the city government 
prioritized maximizing services to residents without 
increasing costs.  In addition, the city was implementing a 
data-based approach to monitoring the dispensing of city 
services. 
 
At this same time, Cleveland State University, a 
comprehensive and government supported institution of 
higher education located in downtown Cleveland, began 
to offer financial rewards to faculty who reached out to 
community agencies to form research partnerships.  

Faculty in the mathematics and sociology departments 
began a dialogue with the Cleveland City Police 
Department to collect and analyze data related to calls of 
service.  At that time, there was no comprehensive 
analysis of the volume, location, and nature of the calls.   
 
As a result of this partnership, we received access to 
approximately 5 million records for calls for service 
(commonly known in the United States as 911 calls) and 
officer initiated police activity from 1995-2003.  A 
summary of findings from these data appears in Batizy 
(2004).  This paper reports findings on a subset of the 
1,721,576 calls made from January 1, 2001 through 
December 31, 2003.   
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The goal of this paper is to describe effective forecasting 
models for police activity in the city of Cleveland to assist 
the Cleveland Police Department with staffing during 
peak crime hours.  Specifically, we focus on the peak shift 
and the peak summer months.  Inaccurate forecasts of 
calls for service are costly to police departments because 
they result in either an inadequate number of police to 
respond to the calls, or an oversupply of police on duty.  
Understaffing of police increases the possibility of delayed 
time of response to the 911 calls and the associated 
consequences of a poor response time.  Overstaffing 
increases the direct labor cost to the City of Cleveland. 
 
In addition to the goal of creating an accurate forecasting 
model, we want to develop a relatively simple user-
friendly model for implementation at the Cleveland 
Police Department.  The resulting model needs to be 
feasible, both from a financial and practical perspective.  
The reason we chose the peak months and the peak shift 
was the fact that peak crime times and months present 
the most challenges in staffing across the districts in 
Cleveland.   
 
Background 
 
Research in the field of emergency management and 
response can be found in the operations research, 
criminology, and sociology literatures.  Goldberg (2004) 
provides a review of operations research and statistical 
models for the deployment of emergency service vehicles.  
Goldberg highlights the study of Kamenetzky, Shuman, 
and Wolfe (1982) that developed a regression model to 
predict demand for pre-hospital care. Its limitations were 
that it ignored the temporal issues known to 
affect demand for services.  Mabert (1985) developed a 
demand-for-911 service model using Box-Jenkins time 
series methodologies.  Recently, Channouf et al. (2007) 
developed time-series models of call volume for 
emergency medical service in Calgary and Alberta and 
Taylor (2007) provided a comparison of five univariate 
time series methods for forecasting intraday arrivals at a 
call center in the United Kingdom.   
 
It is widely known that ARIMA models are useful in 
modeling call center data.  Examples include Bianchi, et 
al. (1998), Andrews and Cunningham (1995), and 
Nijdam (1990).  Most recently, Burman and Shumway 
(2006) used the ARIMA method to model a U.S. energy 
and global temperature time series to compare alternative 
modeling approaches. 
 
In the criminal behavior literature, temporal variations 
have been documented frequently.  Harries, et al. (1984) 
reviewed the long-associated link between weather and 
human behavior and provided an analysis of seasonality 

and assault in Dallas, Texas.   Other research relating 
crime and seasonality includes Anderson, et al. (1997); 
Auliciems and DiBartolo (1995); Baumer and Wright 
(1996), Cohn (1993); Cohn and Rotton (2000, 2005); 
Harries (1990); and Rotton and Cohn (2000, 2004).  In 
many of these studies, it was not uncommon to use data 
sets that contained crime data from the past decade (or 
even longer) due to the lag time in reporting and 
releasing data that are reliable. 
 
Data Description 
 
The first step in our data preparation was aggregating 
calls to the number of calls per hour.  This provided 
24,000 data points across all kinds of calls for service and 
officer calls of police activity.  For example, a summary of 
the Cleveland data shows that there are 219 different 
identifying codes for the types of calls for police service.  
The table below gives the top ten categories for calls for 
service and officer activity. 
 
In Table 1, perhaps surprisingly, the third most common 
type of calls for service is domestic violence involving 
assault or threats of assault with the suspect on the scene.  
Another area of surprise may be the large number of 
silent 911 calls.  These calls are made to the call center, 
but the caller immediately hangs up or is silent.  The City 
of Cleveland has a policy in place that officers respond to 
the geographic location of the call to determine if there is 
need of police service, so each of these requires a 
response.   
 
Table 1.  Frequency of top ten categories shows distribution 
of types of calls 

Nature of Call Count Percent 
Traffic Stop 186,123 10.8 
District Assignment 79,032 4.6 
Domestic Violence (Suspect present) 77,420 4.5 
Burglar Alarm 71,686 4.2 

Silent 911 Call 71,620 4.2 
Residential Burglar Alarm 62,889 3.7 
Drug Activity 54,195 3.1 
Civil Disturbance 50,087 2.9 
Suspicious Activity 34,750 2.0 
Theft Report 34,312 2.0 
 
Of interest to city council members is the number of calls 
per service broken down by District.  The city of 
Cleveland has six districts with some known for higher 
crime than others.  A simple frequency table for the six 
districts of Cleveland reveals a fairly even distribution of 
calls across the six districts (Table 2).   
 
If, however, we take into account the population of each 
district, we see a different picture. The per capita analysis 
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shows that district three has the greatest number of calls 
per capita because, although it has the fewest number of 
calls, it also has the smallest population of all the districts.  
(This zone contains the downtown Cleveland business 
district which contains many businesses, restaurants, and 
night clubs and fewer residential areas.)  While it is 
interesting to note the differences in calls per capita 
across the districts, each call still requires a response, and 
Table 2 demonstrates that the districts are similar in 
frequency of calls. 
 
Table 2.  Frequency of 911 calls by district shows relative 
consistency across district 

District Calls Percent 
D1 290099 16.9 
D2 296278 17.2 
D3 270717 15.7 
D4 309119 18.0 
D5 271219 15.8 
D6 284144 16.5 

 
Another variable of interest is the Priority of the service 
call.  The City of Cleveland classifies calls into five 
priorities with priority 1 calls being the most important.  
Priority 1 calls are calls for service where crime is in 
progress such as homicide, domestic violence, ethnic 
intimidation, shots being fired, or robbery.  The 
distinguishing feature is that the perpetrator is on the 
premises or close to the premises.  Priority 5 calls are 
often police - initiated calls to the dispatch center that 
refer to patrolling one’s district, filing reports, or walking 
through public areas such as parks and neighborhoods.   
 
If we examine the number of calls over time by Priority, 
we observe that seasonal patterns are fairly pronounced 
across priorities 1, 2, and 3, while priority 4 and 5 calls 
are more consistent (see Figure 1).  Seasonal peaks in the 
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Figure 1.  Time series of monthly calls by Priority (P1 – P5) 
during 2001 – 2003 

summer are clearly visible in all districts for the most 
urgent calls: priorities 1, 2, and 3. Each of these time 
series is stationary in the mean with seasonal peaks 
during the summer months (June, July, and August) 
during the years 2001 – 2003.  
 
Since we have hourly data, it is also useful to examine a 
time series plot of the mean number of calls per hour of 
the day aggregated across all districts and priorities 
(Figure 2).  Here we see that the busiest hours of the day 
for calls for service are in the late afternoon/ early 
evening (hours 15 – 20).  This is when traffic is at its 
worst and young people are home from school.  Many 
individuals believe that police activity is busiest at night, 
but we see there is a steady decline in calls for police 
activity from 9:00 pm until 6:00 a.m.   
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Figure 2.  A plot of average calls per hour over the 24 hours 
in a day shows the peak in  calls between hours 15 and 20 
(3pm – 8:59pm) 
 
If we examine this six hour time frame (3:00 pm to 
8:59pm) across the year on a monthly basis, we obtain 
Figure 3.  Here we see that calls for service do peak 
during the hot summer months.  The median number of 
calls in June (month 6) is 102 while in December (month 
12), the median is 74.  Thus, a 38% increase in median 
number of calls exists comparing June to December.  This 
should not be surprising, since prior studies have shown 
that summer months associated with warmer weather are 
likely to be months with more violence (Anderson et al., 
1997).  
 
The Cleveland City Police Department schedules police 
in three different shifts and these peak hours of incoming  
calls overlap most with the third shift (3PM – 11PM).  
Thus for staffing purposes, the number of hourly calls will 
be forecasted during shift three in the summer months of 
June, July, and August – the peak hours and peak months.  
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Beside the hourly calls, other variables in our dataset 
included: seasonal dummy variables, including the day of 
the week and hour of the day and weather-related 
variables, such as wind speed, sea level pressure, and 
temperature (in °F). We will compare models using two 
different time series. First, we will use all hourly calls 
during shift 3 between Jan., 2001 and Aug, 2003 (7671 
data points).  Second, to explore the ability in the future 
to use smaller datasets, we will use only the hourly calls 
during peak hours and peak summer months in 2001 – 
2003 (2096 data points).  In both time series, we held out 
the observations from August 18, 2003 to August 31, 
2003 (112 points, or 14 days of shift 3) to evaluate and 
compare the accuracy of our models.  
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Figure 3.  A plot of calls per hour between 3:00pm – 
8:59pm by month during 2001 – 2003 shows a summer peak 
during June – August (month 6 – 8). 
 
Data Analysis 
 
While a large number of models were created, this case 
study examines the ones we consider the most useful for 
the Cleveland Police Department.  The main metrics 
used for model evaluation were retrospective and 
prospective mean absolute percent error (MAPE). After 
examining the stationary time series and exploring the 
data, we decided to start with smoothing models.  Of 
these models, the most accurate was an eight-hour 
moving average model to predict hourly call volume for 
two weeks in the future – in this case the last two weeks 
in August, 2003.  The reason for the effectiveness of this 
model is largely because the data were only for one shift 
so the data will most likely show an eight hour period.  As 
we can see in Figure 4, the 8-hour moving average model 
showed good results with a relatively low MAPE of 
approximately 13% using the shorter time series 
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Figure 4.  Plot of hourly 911 calls and moving average 
model during shift 3 for summer months 2001 - 2003 shows 
a stationary time series with relatively few unusual 
observations. 
 
containing only prior summer months.  (The MAPE was 
similar at 14% for the lengthier time series).   
 
Note that the moving average model follows the peaks 
and valleys of this stationary series somewhat closely.  
The unusually high call observations occurred on July 4th, 
2002 and 2003 and on August 14, 2003.  The outliers on 
July 4th are not unexpected, since holidays are known to 
be likely dummy variables in a crime or sociological 
regression model.  The outlier on August 14, 2003 is most 
likely due to the onset of a citywide power outage, which 
was part of a larger blackout and included all of Ohio, the 
Northeastern United States, and Eastern Canada. 
 
While the FPE (Forecast Percent Error) of this smoothing 
model was only 3.06% for the last two weeks in August, 
this simplistic model may not be practical for forecasting 
two weeks ahead; although it may be accurate on average, 
it may also miss any volatility during the forecasted two 
week period.  A second smoothing model that was tried 
was the single exponential model, which produced a 
similar MAPE (13% and 14% for the short and lengthier 
time series, respectively). 
 
Given the seasonality of the time series, as a next step in 
model building, we evaluated the Holt-Winters 
multiplicative model to capture the level, trend, and 
seasonal components in the 911 call time series.  While 
the MAPE for the Holt-Winters model was lower (12% 
and 13%, for the two time series, respectively), the 
forecast percent error for the last two weeks in August 
was higher (-11 % for both models) than the simpler 
smoothing model, which meant that the number of 
incoming 911 calls were under predicted on average.  In 
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fact, approximately two-thirds of the hourly forecasts for 
the third shift during these last two weeks in August were 
under forecasts.  The implication is that the police force 
would be consistently understaffed during the third shift 
if this model were used. 
 
Next, we chose to focus our efforts on a multiple 
regression approach using temperature, intervention 
variables, and autoregressive terms.  The final model 
using the shorter time series included dummy variables 
for the July 4th holiday, day of the week, hour of the day 
(all with p < 0.01) – and quantitative variables for 
temperature (in °F, p < 0.01) and the number of 911 
calls 14 and 21 days ago (or 112 and 168 hours ago, p < 
0.05).  Note that more recent autoregressive terms could 
not be used in the model if the purpose is to forecast calls 
two weeks into the future.  Also, as expected the 
coefficients support that calls are highest on Fridays 
between the hours of 9 – 11 PM..  The multiple 
regression model for the lengthier time series did not 
include temperature, since it was missing for a period 
during 2002, but did include dummy variables for the 
months, in addition to hour and day of the week (all 
coefficient p-values < 0.001, see Table 3). 
 
Despite our use of dummy variables and autoregressive 
terms, this model continued to have difficulty with the 
previously identified outliers and autocorrelation 
remained a problem.  However, prospective error (MAPE 
of the forecasts) for both time series was the best of all 
the models.  If forecasted temperatures can be reliably 
obtained two weeks out to predict staffing needs two 
weeks in advance, then the first model can be used to 
effectively forecast 911 calls.  Otherwise, staffing could be 
determined from using only the dummy variables for hour, 
day of the week, and month, plus the level of calls 2 and 
3 weeks ago based on the lengthier time series. 
 
Finally, our analysis shifted to autoregressive/ integrated/ 
moving average (ARIMA) models, originally described by 
Box and Jenkins (1976).  These models use 
autoregressive (AR) terms, which are lagged observations 
of the dependent variable and moving average (MA) 
terms, which are lagged error terms as independent, or 
explanatory, variables.  If the dependent time series is 
differenced, then the AR and MA terms are integrated 
(I) with the process of transformation and the predicted 
variable is now the change, or difference, in the 
dependent variable.   
Our first step in developing an ARIMA was to examine 
the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) to determine the 

appropriate AR and MA terms to include in the model.  
The ACF of hourly 911 calls clearly showed the 
seasonality in the series (see Figure 5) and the PACF 
indicated additional AR and MA terms that were 
appropriate for the model.  The strong seasonality 
suggested a seasonal difference, so we used these 
differenced values as our dependent variable. The 
resulting ARIMA model included AR terms for the prior 
hour and the same hour of the day for the five previous 
days (5 seasonal AR terms). None of the MA terms 
proved to be significant. Thus the final ARIMA model 
was (1,0,0)(5,1,0)8.  This model produced an improved 
MAPE over the Holt-Winters method (approximately 
12% using both time series).  Table 3 compares the error 
for each of the models discussed in this case study.   
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Figure 5.  The autocorrelation function shows the 
relationship between incoming 911 calls to the number of 
calls the same time on prior days (using only the 8 hours in 
shift 3). 
 
Conclusion 
 
Our analysis supported previous statistical studies that 
found a relationship between peak crime rates and 
temperature.  A multiple regression model using 
temperature (in oF) and intervention variables for 
holiday, day of the week, and hour of the day together 
yielded an historical MAPE of less than 10%. In addition, 
our analysis revealed little difference between models 
developed on the full time series of hourly calls during 
shift 3 for every month from Jan., 2001 to Aug., 2003 
compared to the shorter time series (using only prior 
summers).  The model developed on the lengthier time 
series did, however, produce the lowest prospective 
MAPE and enables the Cleveland Police Department to 
forecast calls based only on the hour, day, month, July 
4th holiday, and the level of calls from 2 and 3 weeks ago. 
The advantage of this approach is that the coefficients 
from this model allow police to build a scheduling model 
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two weeks in advance using variables that are easily 
accessible.   
 
The need to have a model that is feasible and flexible 
supports the use of models that can be easily explained, 
programmed, and implemented.  The hardware and 
software requirements of our models are minimal and the 
forecasts can be readily obtained and updated.    As with 
any forecasting models, the uncertainty of events, such as 
major storms or blackouts, contribute to the volatility of 
the series and of the forecasting error.  In addition, 
limitations to model implementation include labor union 
rules, advance posting of shifts, and the desire of many 
officers for vacation time during the summer season; 
these all provide challenges for the city to maximize 
resources in the peak summer months.   These models do 
provide guidance, however, on the expected staffing 
needs during the busiest period of calls for service to the 
City of Cleveland.   
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