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Introduction 
 
The goal of this paper is to provide a practical and 
accessible example of ARIMA modeling, which can then 
serve as a case study for students in econometrics or 
statistics. We chose to develop our case on the exchange 
rate between the US dollar and the Euro (USD/EUR) 
because this field of study has two main advantages. First, 
up-to-date data, as the ones we used in this paper, are 
available freely to download from international and 
national agencies. Second, exchange rates have been 
extensively studied in the literature, and several 
competing economic theories have been put forth to 
explain their fluctuations in terms of macro-economic 
variables. Thus, it gives an excellent opportunity, as well 
as an example for students, to study one possible method 
to put those theories to test.  
 

We think that these combined advantages provide both 
teachers and students with a perfect framework to 
practice ARIMA modeling anew. New up-to-date data 
which could be tied to current events will always be freely 
available, while data from the period this paper is 
concerned with will remain available for replication 
purposes. Readers will not find in the following pages a 
new theory concerning the movements of exchange rates, 
though the results of our models still have interesting 
theoretical implications. Indeed, our results build on the 
strength of ARIMA modeling to provide insights on the 
structure of the USD/EUR time series. Our models also 
put to test the influence on exchange rates of 
macroeconomic covariates whose choices have been 
theoretically driven. As we will show, exchange rates 
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modeling and forecasting well deserve their reputation as 
difficult endeavors. 
 
The paper is developed in the following way. In the first 
part, we present the different time series we consider, 
explaining our choices for the covariates. In the second 
part, we explain our methodology and modeling 
approach, referring to the general methodology of 
ARIMA modeling. Then, we present the resulting 
models, and their different characteristics. Finally, the 
discussion section places our models in a broader 
perspective, and relates the equations to practical 
explanations. 
 
Context and Background 
 
In this section, we provide some historical as well as 
economic context to our exercise in ARIMA modeling. 
To help with understanding the special role of the 
USD/EUR exchange rate, we first give a brief overview of 
the historical developments that lead to the inception of 
the European currency, before providing the rationale 
behind our choice of covariates for the study in a second 
section. 
 
Presenting the euro: A short history of the European 
currency 
 
Exchange rates, and thus an understanding of their 
fluctuations, are at the crossroad of geopolitical and 
economic histories of our modern societies. It is not the 
subject of this paper to delve into their fascinating 
intricacies. However, because the data in this paper cover 
an important period in recent economic history which 
oversaw the convergence of the monetary systems in 
Western Europe and the inception of the Euro, it is 
important to have a few facts in mind. The idea of a 
monetary system common to the countries of Western 
Europe date back to the late 1970s, and the European 
Currency Unit (ECU) was created on March 13, 1979 as 
an internal account unit for the European Community. In 
June 1988, the European Council confirmed the objective 
of a progressive realization of an Economic and Monetary 
Union (EMU) in Western Europe. A year later, in June 
1989, it further decided that this progressive realization 
would unravel in three stages: from July 1st, 1990 to 
December 31st, 1993; then, from January 1st, 1994 to 
December 31st, 1998; and finally, from January 1st, 1999 
to nowadays (European Central Bank, 2008). Since the 
beginning of this three-stage plan, the use of the ECU, 
previously restricted, was freely granted, and it began to 
be more commonly used for some international financial 
transactions. The second stage marks a strengthening in 
the convergence of the different monetary systems and 
the progressive emancipation of the central banks from 

national sovereignties. It is also during this period that 
the European Central Bank (ECB), as well as the 
European Monetary Institute, were created. Finally, the 
last stage is synonymous with the introduction of the 
Euro (EUR) to replace the ECU as an accounting unit as 
of January 1st, 1999, and as a real currency with the 
introduction of coins and banknotes as of January 1st, 
2002. 

1.2000

1.1000

1.0000

0.9000

0.8000

0.7000

01-  01-  01-  01-  01- 01- 01- 01-01- 01- 01- 01- 01- 01-
JAN- JAN- JAN- JAN-JAN- JAN- JAN- JAN- JAN- JAN- JAN- JAN- JAN- JAN-

2003  2004 2005 2006 20071994 1995 1996 1997 1998 1999 2000 2001 2002

Time

 
Figure 1. Exchange rate, EUR per USD, January 1994 to 
September 2007 
 
These dates are important to our study for several 
reasons. The first thing to recognize is that our dataset is 
constituted of monthly time series that cover the period 
from January 1994 to October 2007. Hence, the 
exchange rate from January 1994 to December 1998 is 
calculated from quotations on the ECU, at the time the 
only European currency. If the ECU was a “virtual” 
currency constituted as a weighted average of the actual 
currencies of the members of the EMU, the convergence 
imposed by stage II of the European Council plan ensures 
some validity to the extrapolation of the exchange rate 
time series to the pre-euro period. Moreover, the 
calculations were undertaken by the ECB, the original 
source of the time series in this dataset. From a global 
point of view, the progressive introduction of a European 
currency, backed by an independent European central 
bank, has been one main driver to the situation 
nowadays.  
 
It is almost unnecessary to cite the importance to the 
world’s economy that the euro/USdollar exchange rate 
has acquired. Recently, using economic projections for  
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Figure 2. EUR per USD: sample Autocorrelation Function 
(top); sample Partial Autocorrelation Function (bottom) 
 
the next 15 years, some authors (e.g. Chinn & Frankel, 
2006) have argued that the chance that the Euro 
currency will take over the role of the world’s reserve 
currency from the US Dollar is not null. Moreover, the 
recent turmoil on the financial markets, in February-
March 2008, may be seen as a sign of a weakening of the 
US Dollar against the Euro – one of the scenarios used by 
Chinn and Frankel for their projections. 
 
From a purely econometric point of view, the exchange 
rate displayed in Figure 1, presents some characteristics of 
a (non stationary) drifted random walk, with two main 
periods corresponding to a weakening of EUR against 
USD from 1995 to 2001, followed by the reverse 
phenomenon from 2001 to nowadays. Furthermore, the 
sample Autocorrelation Function (ACF) and the sample 
Partial Autocorrelation Function (PACF), which are 
representative of the correlation structure across periods 
of the time series, displayed in Figure 2 for the  
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Figure 3. Change in EUR per USD: sample Autocorrelation 
Function (top); sample Partial Autocorrelation Function 
(bottom) 
 
EUR-per-USD time series and in Figure 3 for the first 
difference of the time series, again show some 
characteristics of a non-stationary process. That is, the 
sample ACF of exchange rate decays very slowly, while 
the corresponding PACF shows only one very significant 
contribution at the first lag. At the same time, for the 
time series of the first differences, the ACF cuts off after 
the first lag, while the PACF cuts off after only two 
significant contributions.  
 
The choice of covariates: choosing economic 
indicators 
 
The goal of this section is to present each of the 
covariates that enter the study below in the economic 
framework that lead us to choose it. For this purpose, we 
will appeal to five different economic constructs: the 
Interest Rate Parity (IRP), Purchasing Power Parity 
(PPP), Money Aggregates, and Business Cycles.  
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Figure 4. (a) and (b): Interest Rate Parity covariates: (a) Slopes of Interest rates; (b) Immediate Interest Rates --- 
(c) log-changes in M3 aggregates  --- (d) Business Cycles: log-levels of share prices indices  ---   Legend: European 
Monetary Union: continuous/red line; USA: dashed/blue line 

Interest Rate Parity (IRP) 
Interest Rate Parity is a fundamental relationship that 
relates interest rates and exchange rates. It relies on the 
idea of a possible financial arbitrage which makes use of 
the differential in interest rates between two currencies. 
The idea is to borrow money in the currency with the 
lower interest rate and invest it in the currency with the 
higher interest rate. Since a consistent arbitrage would 
ultimately lead to infinite wealth, there must be a 
mechanism that balances the interest rates differential. In  
this theory, the exchange rate is seen as the balance 
mechanism. Conversely, since this arbitrage should not 
exist, interest rates can be used to forecast the 
movements of the exchange rate between the two 
currencies.  
 
The classical approach to exchange rate forecasting using 
IRP belongs to the Chicago tradition (cf. Frankel, 1979). 

Under this approach, prices are completely flexible; 
hence, changes in the nominal interest rates reflect 
changes in the expected inflation rate. In this scenario, a 
price rise in an exchange rate means a rise in the price of 
the foreign currency. Therefore, we must see a positive 
relationship between the exchange rate and the nominal 
interest rate differential between two countries. A more 
recent approach based on a Keynesian view (Keynes, 
1923; Dornbusch, 1976) assumes a sticky price in the 
short run. These two different approaches were further 
extended by Frankel (1979), who developed a model 
which incorporates assumptions of both traditions. To 
incorporate this idea, we chose to use as covariates the 
slopes of the interest rates, defined as the difference 
between the long term interest rate and the short term 
interest rate, and the immediate interest rates, which 
represent the daily cost of money, both for USD and 
EUR. These are presented in Figure 4 (a) and (b). 
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Purchasing Power Parity (PPP) 
The theory of purchasing power parity (PPP), coined by 
Gustav Cassel (1918), uses the long-term equilibrium 
exchange rate between two currencies to equalize their 
purchasing power in their home country. Thus, the 
Purchasing Power Parity (PPP) exchange rate is the rate 
that equates the two currencies by eliminating the 
differences in the price levels between countries. 
Although the effects of PPP on long-term exchange rate 
forecasting have been supported in past literature 
(Rogoff, 1996), the effects on short-term forecasting have 
not been supported (Rogoff, 1996; Lothian and Taylor, 
1996; Grossman and Rogoff, 1995). The “mean 
reversion” hypothesis – exchange rates to revert to their 
PPP values in a longer period – was supported by 
empirical studies. Xu (2003) suggested the use of 
aggregate price indices to test the fitness of PPPs or 
exchange rate forecasting. We choose to use the 
differential of inflation measured as the difference 
between the log-changes in the Consumer Price Indices. 
It is presented in Figure 5. 

 
Figure 5. Inflation differential between EMU and United 
States 
 
Money aggregates 
Since the implementation of the flexible exchange rate 
system in the early 1970s, researchers have become 
interested in the monetary approach to exchange rate 
forecasting. In this approach, the relative price of two 
currencies is influenced by the supply and demand for 
money in two countries. Money aggregates measure the 
stock of money in circulation within a country. It is 
assumed that monetary aggregates are sufficiently 
sensitive to interest rates. Changes in monetary 
aggregates are considered to reflect a change in monetary 
policy, economic outlook, and inflationary pressures. 
However, it is difficult to know the direction of the 

causality effect of money aggregates on interest rates, and 
therefore on exchange rates. There are several ways in 
which monetary aggregates can be calculated: M1 
(“narrow money”) includes currency in circulation plus 
checkable deposits and travelers checks; M2 (“broad 
money”) is essentially M1 plus savings deposits and small 
(less than $100,000) time deposits; and M3 is the widest 
measure, consisting of M2 plus large time deposits and a 
number of other relatively liquid instruments. In this 
study we use the log-changes in M3 aggregates as 
covariates. The evolution of the log-changes in M3 is 
shown in Figure 4(c).  
 
Business Cycles 
Business cycles have been considered in the literature as 
possibly influencing the movement of exchange rates. 
Since share prices track the business cycle quite closely, 
we include a measure of business cycles in our analysis by 
using the log of the share price indices computed by the 
OECD. These indices are normalized such that their 
levels in 2000 were 100. 
 
Dataset 
 
The data have been downloaded from the OECD 
statistical database, available online at 
http://stats.oecd.org/wbos/default.aspx. The data cover 
monthly financial and economic indicators for the longest 
time interval available in the OECD database. Note the 
special case of the Euro Monetary Union. The starting 
date of the time series corresponding to that geographic 
zone often starts before the actual historic inception time 
of the Euro Monetary Union. In those cases, the 
calculations were conducted by the OECD statistics 
units. One of the reasons we kept those data points, aside 
from the fact that the series would be too small to 
decently fit ARIMA models if we had not, was that all 
series come from the same source ensuring coherence in 
the calculations. More information can be found on the 
OECD website.  
 
Models and Results 
 
In this section, we explain the tenants and underpinnings 
of ARIMA models. It should be noted that the 
methodology of ARIMA estimation and model selection 
is a classical topic covered in most textbooks on time 
series analysis (e.g.  Brockwell and Davis, 2003; 
Hamilton, 1994; Tsay, 2005; Wei, 2006). We do not 
intend to duplicate here the description of already well 
documented methodologies, but rather to give a practical 
meaning in this context to the models. We present three 
models: one with the EUR per USD exchange rate only 
(i.e. with no covariates), which we call the simple 
ARIMA model; and two ARIMA models with added 
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covariates, one comprising all of our chosen economic 
indicators, and another restricting the covariates to a 
selected few. 
 
The modeling approach 
 
The simple ARIMA model 
AutoRegressive Integrated Moving Average (ARIMA) 
models intend to describe the current behavior of 
variables in terms of linear relationships with their past 
values. These models are also called Box-Jenkins (1984) 
models on the basis of these authors’ pioneering work 
regarding time-series forecasting techniques. An ARIMA 
model can be decomposed in two parts. First, it has an 
Integrated (I) component (d), which represents the 
amount of differencing to be performed on the series to 
make it stationary. The second component of an ARIMA 
consists of an ARMA model for the series rendered 
stationary through differentiation. The ARMA 
component is further decomposed into AR and MA 
components. The autoregressive (AR) component 
captures the correlation between the current value of the 
time series and some of its past values. For example, 
AR(1) means that the current observation is correlated 
with its immediate past value at time t-1. The Moving 
Average (MA) component represents the duration of the 
influence of a random (unexplained) shock. For example, 
MA(1) means that a shock on the value of the series at 
time t is correlated with the shock at t-1. The 
Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PCF) are used to estimate the 
values of p and q, using the rules reported in Table 1. In 
the next section, we provide an example of a simple 
ARIMA model. 
 
Table 1. Characteristics of the theoretical ACF and PACF 
for stationary processes (excerpted from Wei, 2005 p.109) 
Process ACF PACF 
AR(p) Tails off as exponential 

decay or damped sine 
wave 

Cuts off after lag p 

MA(q) Cuts off after lag q Tails off as 
exponential decay or 
damped sine wave 

ARMA(p,q) Tails off after lag (q-p) Tails off after lag (p-q) 
 
Example of a simple ARIMA model 
As we have already noticed when we presented the EUR 
per USD exchange rate, its time series exhibits some 
nonstationarity. In fact, if we refer to the guidelines in 
Table 1, we see that only the ACF and the PACF of the 
first-differenced USD/EUR series, in Figure 3, feature a 
decaying pattern with reasonable cut-off points. 
Conjointly, Table 1 and Figures 2 and 3 suggest an 
ARIMA(2,1,0) structure. It implies the following 
evolution equation 

( ) ( )[ ] ttt aYYBB =−−−− − μϕϕ 1
2

211  
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where Yt represents the exchange rate (in EUR per USD), 
B is the backshift operator, and at is random noise. We 
estimated this model using the ARIMA procedure in 
SPSS1 through a maximum likelihood procedure 
assuming that no data are missing2, and reported the 
results in Table 2.  
 
Table 2. Simple ARIMA(2,1,0) for EUR per USD 
exchange rate 

Model Fit statistics       
Akaike 
(AIC) 

Bayesian 
(BIC) 

RMSE Ljung-Box 
Q(18) 

DF Sig. 

-839.758 -830.440 0.019 13.936 16 0.603 
  Estimates Std Error t ≈ Sig. 

Coeff. AR1   0.392 0.077 5.082 0.000** 
  AR2 -0.185 0.077 -2.396 0.018** 
  Constant -0.001 0.002 -0.629 0.530 

(*) Significant at 10% level (**) Significant at 5% level 
 
The Ljung-Box statistic of the model is not significantly 
different from 0 with a value of 13.936 for 16 degrees of 
freedom and an associated p-value of .603, thus failing to 
reject the null hypothesis of no remaining significant 
autocorrelation in the residuals of the model. This 
indicates that the model seems to adequately capture the 
correlation information in the time series. Moreover, the 
low root mean square error (RMSE) indicates a good fit 
for the model. Both AR coefficients, and1ϕ 2ϕ , are 
significantly different from 0 with values 0.392 (0.000) 
and -0.185 (0.018) respectively. The numbers in 
parentheses are the p-values. This model enables us to 
write the following evolution equation for the exchange 
rate,  

                                                            

i 1 ⎦⎣ ⎠⎝ =

( )dB−=Δ 1

1The ARIMA procedure in SPSS estimates the following 
ARIMA(p,d,q) model: 
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where B is the backshift operator, is the differencing 

operator, ( ) p
pp BBBB ϕϕϕϕ −−−−= 2

211
q

qq BBBB θθθθ −−−−= 2
211)(

is the AR 

polynomial, is the MA 

polynomial, and Xit are predictors of the dependent variable Yt.  

2 This procedure is called Melard’s algorithm in SPSS. Another 
procedure, using the Kalman filter, is available for efficient 
maximum likelihood estimation in the case of missing data.  

 



~ 51 ~ Vagaries of the Euro / Weisang & Awazu 

 

321
4 185.0578.0392.1102.9ˆ

−−−
− +−+×= tttt YYYY   (1) 

 

where  represents the value estimated by the model for 
Yt. Notice the extremely small value of the constant in 
this equation, which is reflective of the lack of 
significance of the estimate

tŶ

μ̂ , with a value of -0.001 
(0.530). This equation establishes the evolution of the 
EUR per USD exchange rate as a weighted sum of its past 
three values plus a random shock. Furthermore, one 
interesting feature is, that because the time series of the 
exchange rate needs to be differenced once to be made 
stationary, the coefficients of this linear combination of 
past values sums to one. That is, the current value of the 
exchange rate can be interpreted as a weighted average of 
its past values. Notice also that the coefficients decrease 
in absolute value from t-1 to t-3, therefore giving 
proportionally more weight to the most recent values. 
 
Regression and ARIMA on errors 
We have seen above that a simple ARIMA model can 
provide an evolution equation with a simple 
interpretation. Nonetheless, this type of model can be 
criticized because it fails to provide an explanation of the 
causal structure behind the evolution of the time series. 
One simple and common way to try to get at the 
structural relationships behind the phenomenon we 
model is to use linear regression. Note that it certainly 
does not amount to proving causal relationships (Pearl, 
2000), but it provides a simple and easily interpretable 
equation that attempt to model relationships. However, a 
linear regression of the EUR per USD exchange rate on 
explanatory variables, such as economic indicators, also 
has some drawbacks. In this section, we briefly expose 
why regression is not suitable and proceed to explain how 
the ideas of linear regression and time series modeling can 
be combined. We support our explanation with examples 
of two models that combine both ideas. These final 
results are summarized in the last subsection. 
 
Combining good ideas: from regression to ARIMA 
on errors 
Linear regression is used to estimate linear relationships 
between a dependent variable and explanatory variables. 
This relationship can be summarized in an equation of 
the type ttt cXY εμ ++= . One key assumption in that 
modeling is that the random components εt are 
independent and identically distributed. In particular, 
their values should not be correlated. However, when 
one regresses the exchange rate against the nine 
covariates chosen above and a time trend, one finds that 
the Durbin-Watson statistic, which is a measure of the 
correlation between successive values of the random 
components, is 0.273. This suggests a strong positive 

correlation between the random components at times t-1 
and t. Moreover, the sample ACF and PACF of the 
residuals of the regression, displayed in Figure 6 (a) and 
(b), show that the first 9 autocorrelations of the time 
series are significant. These results confirm that the linear 
regression model fails to account for the correlation 
across time, and furthermore, that the random 
components of that regression follows an ARIMA model. 
In fact, the sample ACF and PACF, conjointly with the 
plot of the time series of the residuals, in Figure 6 (c), 
suggest that the residuals are stationary and may be 
modeled by an ARMA(1,0) model. 
 
The idea then is to build a model that combines a 
regression and an ARMA(1,0) model on the errors. If this 
is the right intuition, because the coefficients of the 
regression component and the coefficients of the 
ARMA(p,q)  component are modeled at the same time, it 
may turn out that the orders, p and q, may not be exactly 
the same as the orders of the ARMA model that would fit 
the residuals of the first regression3. In our case, we found 
that p should be equal to 3, in order to account for the 
autocorrelation in the residuals.  That is, if we 
write με −−= ttt cXY , supposing that the current value 
of the random shock depends only on the values of the 
last three random components, we want tε to follow an 
evolution equation of the form 

ttt a=tt −−− −3−− 32211 εϕεϕεϕε , where is truly an 
independent random noise. This translates into an 
evolution equation for which is given by  

ta
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We see that this last evolution equation for Yt reflects the 
dependence of Yt on its past as well as a dependence on 
some explanatory variable Xt and the past values of this 
independent variable. Notice that the dependence of Yt 
on its past is summarized by the coefficients 321 ,, ϕϕϕ , 
and that the same coefficients dictate the dependence of 
Yt on the past of the explanatory variables, up to a 
multiplicative constant. In the following section we 
present two models based on this blueprint. 
 

                                                            

3 Note though that the stationarity of the model should not 
change. In other words, if the residuals of the regression are 
stationary and modeled by an ARMA, then it is an ARMA 
component that will be found in the combined model. Conversely, 
if the residuals exhibits nonstationarity and can be modeled by an 
ARIMA(p,d,q), the combined model should have an 
ARIMA(p’,d,q’) with p’ and q’ possibly different from p and q. 
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(a)  (b)

Results 
We used the ARIMA procedure in SPSS to estimate two 
models using the ideas exposed above. We report the 
results in tables 3 and 4. Both models impose an 
ARMA(3,0) structure on the errors of a regressions. 
Thus, only their regression components distinguish 
between them. The first, in table 3, models the EUR per 
USD exchange rate in terms of its past and the past and 
present values of 9 covariates: the interest rate 
differentials in the EMU and the USA, the immediate 
interest rates on EUR and USD, the inflation differential 
between EMU and USA, the log-variations of M3 
aggregates for EUR and USD, and the log-levels of the 
share price indices for EMU and USA.  
 

The first two things to note concern the performance of 
the model in terms of fit to the EUR per USD time series. 
First, we notice that this model, with a Ljung-Box 
statistic Q(16) of 9.385 for a p-value of 0.897, captures 
the autocorrelation structure of the EUR per USD time 
series well.  Second, compared to the simple 
ARIMA(2,1,0) model presented in Table 2, this model 
exhibits a improved fit with lower values for the Akaike 
Information Criterion (AIC) (-855.45 vs. -841.37) and 
the root mean square error (0.017 vs. 0.019).  However, 
the Bayesian Information Criterion (BIC), another 
statistic for model selection, like the AIC, is significantly 
higher for the ARIMA(2,1,0) model (-815.07 vs. -  
 

  

 
Figure 6. Sample ACF and PACF of the unstandardized residuals of the regression of EUR per USD on the EUR 
interest rate gradient, US interest rate gradient, EUR immediate interest rate, USD immediate interest rate, 
differential of inflation, log-variations of M3 aggregates for EUR and USD, and log-levels of the share price 
indices for EMU and USA: (a) ACF of residuals; (b) PACF of residuals; (c) time series of the unstandardized 
residuals of the regression. 
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Table 3. ARMA(3,0) model of EUR per USD exchange 
rate, with nine covariates  

Model Fit statistics       
Akaike 
(AIC) 

Bayesian 
(BIC) 

RMSE Ljung-Box 
Q(18) 

DF Sig. 

-855.451 -815.073 0.017 9.385 16 0.897 
  Estimates Std Error t ≈ Sig. 

Coefficients:     
AR1 1.398 0.081 17.218 0.000** 
AR2 -0.621 0.132 -4.696 0.000** 
AR3 0.205 0.081 2.549 0.012** 
EUR IR -0.004 0.006 -0.677 0.500 
USD IR -0.003 0.009 -0.285 0.776 
EUR differential 0.005 0.008 0.587 0.558 
USD differential -0.001 0.007 -0.197 0.844 
LogM3- EUR 1.122 0.656 1.711 0.089* 
LogM3- USD -0.354 0.308 -1.152 0.251 
DifInf  0.288 0.247 1.169 0.244 
s[t] EMU 0.285 0.052 5.461 0.000** 
s[t] USA -0.299 0.064 -4.691 0.000** 
Constant 1.025 0.195 5.269 0.000** 
Notes: (IR: Immediate Interest rate; differential: differential of the 
Interest rates; LogM3: Ln(M3[t]) - Ln(M3[t-1]) ; DifInf : 
Differential of Inflation, s[t] : ln(Shares[t]))  (*) Significant at 
10% level (**) Significant at 5% level 

 
835.16).  This suggests that the improvement in terms of 
fit for the more complex model has come at the cost of a 
loss of parsimony. Indeed, many of the covariates’ 
regression coefficients are not significantly different from 
zero, with the exception of the share prices indices both 
for the EMU and the USA (significant at a 5% level), and 
a marginally significant coefficient for the log-variation of 
the European M3 aggregate. Notice also that the 
constant and the AR coefficients are all significant at a 
10% level. 
 
In order to improve this latter model, we estimated a 
second model, keeping as covariates only the share price 
indices. Again, we find that this new model captures well 
the dependence across time of the values of the EUR per 
USD exchange rate, with a Ljung-Box statistics Q(16) of 
8.47 and a p-value of 0.935. The constant and the AR 
coefficients,  and 21 ,, ϕϕμ 3ϕ , are again all significantly 
different from 0, with values 0.955(0.000), 1.375(0.000), 
-0.616(0.000) and 0.225(0.004). This model however 
exhibits an improvement on all fit statistics – AIC, BIC 
and RMSE—when compared to both the ARIMA(2,1,0) 
model and the ARMA(2,0) model with all possible 
covariates. Moreover, all the regression coefficients are 
significantly different from 0, with 0.290(0.000) and -
0.292(0.000) for the EMU and the USA respectively.  
 
One could write the evolution equation given by the 
latter model simply by noticing that equation 2 given in 
the section above is easily generalizable to multiple 
explanatory variables and then replacing each coefficient 
by its estimated value in Table 4. However, it is more 

interesting to notice that the regression coefficients for 
the share price indices are very close in absolute value, 
and in fact, considering the standard errors of each 
estimate, not distinguishable.  We therefore decided to 
set both equal in absolute value to 0.290. Denoting by 

and  the logs of the share price indices, we can 
then write the evolution equation of the EUR per USD 
exchange rate, denoted Yt, in terms of the current and 
past values of the difference in levels between the share 
indices in each currency and the past values of Yt, as 
follows: 
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Table 4. ARMA(3,0) model of EUR per USD exchange 
rate, with two covariates  

Model Fit statistics       
Akaike 
(AIC) 

Bayesian 
(BIC) 

RMSE Ljung-Box 
Q(18) 

DF Sig. 

-869.141 -850.469 0.017 8.417 16 0.935 
  Estimates Std Error t ≈ Sig. 

Coefficients:     
AR1 1.375 0.077 17.900 0.000** 
AR2 -0.616 0.123 -4.994 0.000** 
AR3 0.225 0.077 2.936 0.004** 
s[t] EMU 0.290 0.049 5.966 0.000** 
s[t] USA -0.292 0.061 -4.751 0.000** 
Constant 0.955 0.183 5.205 0.000** 
Notes: (**) Significant at 5% level 

 
Discussion 
 
While it is not our purpose to claim new results in the 
field of exchange rate modeling and forecasting, it is 
nonetheless interesting to discuss and compare the 
models we have found in a slightly broader context than 
models fit and selection. In this section, we first discuss 
the models we found together, before expanding the 
scope of the discussion by including the critiques that 
have been made in the literature on exchange rates 
modeling of econometric and especially ARMA models. 
 
We focus our comparison of our models to the models 
described by equations 1 and 3. Perhaps the first thing to 
notice when comparing equations 1 and 3 is the closeness 
of the coefficients in front of the lags of Yt. This actually 
explains the puzzling fact that one is an ARMA(3,0) 
model while the other is an ARIMA(2,1,0) model. 
Remember that our first ARIMA model imposed that the 
sum of the coefficients be one (since , and 

add up to 1). In the estimation of an ARMA model, 
for constraints of stationarity, the sum of the coefficients 

11 ϕ+ 12 ϕϕ −

2ϕ−
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is constrained to be less than 1. However, in our 
ARMA(3,0) model, the sum is close to 1 with a value of 
0.984. Thus, this model exhibits features close to those of 
an integrated model. Second, the insight on the dynamic 
of Yt gained by introducing the logs of the share price 
indices over the ARIMA(2,1,0) model is not negligible. 
Indeed, equation 3 states that the share price indices 
influence the EUR per USD exchange rate through their 
log differences. If the logs are equal, then equation 3 
reduces to an evolution equation very close to equation 
1. Conversely, if we assume the difference between the 
logs of each index to be constant over a period of three 
months, then the cumulative effect of this difference on 
the EUR per USD rate, i.e. the euro price of a US dollar, 
will be 0.285 times the difference in the log levels of the 
share indices.  
 
Several researchers have claimed that the Random Walk 
(RW) model outperforms econometric and time series 
techniques (Fernandes, 1998; Kilian and Taylor, 1991) 
for the forecasting of exchange rates. In particular, the 
performance of the latter in the short run is found to be 
poor (Goodman, 1979; Meese and Rogoff, 1983; Wolff, 
1988; Diebold and Nason, 1990; Chinn and Meese, 
1995). For example, Meese and Rogoff (1990) found that 
the RW model was superior to an ARMA model. 
Moreover, it is argued that the strict assumptions 
required by an econometric model and time series models 
such as ARIMA sometimes may not be suitable to 
capture nonlinearity. Hence, other researchers have 
proposed a hybrid approach that combines both 
parametric methods and non-parametric methods for 
input selection (Ince and Trafalis, 2006).  
 
Our ARIMA models do not necessary contradict the 
market efficiency hypothesis for the following reasons. 
First, all the models exhibit an integration feature with 
regard to the levels of exchange rates, since the sum of 
the coefficients is close to 1. Thus, we can safely say that 
the time series of the exchange rates in fact exhibit 
characteristics close to RWs. Indeed, the point in saying 
that a process is a random walk is to stress on the 
unpredictability of the increments. To see that our 
models do not necessarily contradict this unpredictable 
feature, it is worth considering equation 2. In equation 2, 
using the fact that the sum of the AR coefficients is close 
to one, we see that unless the levels of the covariates 
have changed significantly over the course of four 
months, their contribution is in fact very small, and the 
model is then comparable to the ARIMA(2,1,0) of 
equation 1, again. Second, the market efficiency 
hypothesis states that at any given time all the 
information available is reflected in the price of the goods 
in the market, here the relative price of currencies as 
compared to the USD. That is to say that at any given 

time t, the information available cannot help in 
predicting the prices at t+1, and the best predictor is the 
level of prices at t. In other words, the best forecasting 
model is the RW. However, if information becomes 
available between time t and t+1, it will be incorporated 
in the price, and therefore, the movements of the price 
depend on other variables. In our case, however, we are 
studying a posteriori the structure of the exchange rates, 
using extended ARIMA modeling. Indeed, we are 
explaining, not predicting, the movement of the prices, 
and it is therefore easy, and sensible, to find better models 
than a RW, which by definition explains nothing.  
 
We may actually argue that if we were to test the 
forecasting efficiency of our models then, since they have 
been built to explain the past, they will be biased toward 
the past in the sense that they will weigh past information 
more heavily than new information, and will perform 
poorly.  To our knowledge, and our understanding, this is 
a salient problem in the modeling paradigm that is not 
easily solved. We can relate this point back to the market 
efficiency hypothesis, and the available information. On 
the FX markets, information is incorporated extremely 
fast, faster than a monthly or even a weekly frequency.  
So models using weekly (or lower frequency) data do not 
allow one to quantify how markets react to some 
information, such as a change in interest rates, because 
the change has already occurred and the information has 
been consumed by the time you predict it. Following this 
line of thought, we can safely say that it is very probable 
that no matter how good our models are to explain the 
movements of the exchange rate, the best predictive 
model may still be a random walk. 
 
From a macroeconomic point of view, it is worth noting 
that none of the economic indicators predicted by the 
theory put forth in the first part of this paper has turned 
to be supported by the empirical facts. The exercise in the 
pages above is but a demonstration of the difficulty of 
finding models that can do more than accurately forecast 
after the fact!  While the models used here are sensible, 
they fall short of succeeding as true forecasting models. 
 
We have provided an interesting example of the use of 
ARIMA models to reproduce and explain a time series. 
We have been mindful of explaining the assumptions and 
underpinnings of the general models, as well as relating 
the estimated models to their practical implications. We 
trust that this material will serve as a useful case study for 
teachers and students of macroeconomics.  
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