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Given a time series that reacts to an intervention, this article illustrates two points:  (1) how simulations, either based 
on a normality assumption or through bootstrapping, can help us measure the impact of the intervention not necessarily 
on the mean but on functionals of the time series; and (2) how backcasting the series can help finding the time interval 
necessary for the series to recover a regular dynamic after the intervention. The methodology has been developed using 
an ARIMA model, but could equivalently be based on alternative models such as basic structural models, or on 
exponential smoothing. 

 
 

1. Introduction 
 

The September 11 attacks on the United States and the 
ensuing security measures generated perturbations on air 
transportation all over the world. The goal of this article 
is to study the incidence of these attacks on the traffic at 
Toulouse-Blagnac airport in the South-West of France. 
The data that have been made available to us (series of 
arrivals and departures) encompass the period of January 
1993 to October 2007. We consider the traffic 
(departures and arrivals) of scheduled and irregular flights 
merged. Our goal is to measure the impact of the attacks 
of September 11, 2001, on this air traffic. An 
intervention model would consist in modelling the 
transition from the mean level before the event to the 
mean level after, under the assumption that the dynamic 
of the error remains unchanged before and after the 
event. Here, we adopt a point of view which, in some 
sense, is opposite to the one just mentioned. We regard 

the situation afterwards as data and examine the 
difference between this reality and what the traffic would 
have been in the absence of this event. We have to 
assume that a good forecast of what should have 
happened can be derived from the series before the event. 
 
We begin with a descriptive examination and a 
comparison of the series before and after the event. We 
consider also the link between arrivals and departures. 
Then, we search for a suitable model to predict the series 
from its observations before September 2001 and, 
backcasting the series from the end of the observation 
period, determine the time, after September 2001, needed 
for the series to reach again a regular dynamic. Lastly, 
using the model obtained for the period before September 
2001, we carry out a large number of simulations of the 
series beyond this date. The distribution of the loss, that 



- 2 -  Air Traffic Loss at Toulouse Airport after September 11 / Aragon & Gnassou 

is of the difference between simulations and the 
realization, gives a measurement of the September 11 
influence on the activity of the airport.  

2. Air Traffic at Toulouse-Blagnac  
 
The airport of Toulouse-Blagnac is the fourth largest 
provincial airport in France with 5,956,552 passengers in 
2006 (compared to 5,612,559 passengers in 2004 and 
5,799,108 in 2005, a rise of 2.71% from 2005 to 2006), 
behind Nice, Lyon and Marseille. It is however the most 
important provincial freight platform with 58,720 tons 
handled in 2006, an increase of 4.1% over the level in 
2005. A similar rise has been noticed on all fronts, 
including both domestic traffic (+2.5%) and 
international traffic (+2.8%). The airport is served by 46 
airlines. 

 

 
Figure 1. Blagnac Airport. 

 
Scheduled flights include: 
− fifteen national destinations: Ajaccio, Bastia, Brest, 

Clermont-Ferrand, Lille, Lyon, Marseille, 
Metz/Nancy, Mulhouse/Bâle, Nantes, Nice, 
Paris/Charles de Gaulle, Paris/Orly, Rennes and 
Strasbourg; 

− twenty European destinations: Amsterdam, Belfast, 
Birmingham, Bremen, Bristol, Brussels, Dusseldorf, 
Frankfort, Geneva, Hamburg, Leeds/Bradford, Lisbon, 
London/Gatwick, Madrid, Malta, Manchester, 
Milan/Malpensa, Munich, Rome and Zaragossa ; 

− seven intercontinental destinations : Algiers, 
Casablanca, Marrakech, Montréal/Pierre Trudeau 
(ex-Dorval), Oran, La Réunion, and Tunis. 

In terms of non-scheduled flights, destinations such as 
Senegal, Andalusia, Austria and Ireland are served from 
Toulouse Blagnac International Airport.  

2.1. Link between arrivals and departures 
 

The yearly traffic, sum of arrivals and departures, is given 
in Table 1. 

As Figure 2 shows, arrivals and departures are tightly 
linked each month. The vertical line indicates September 
01.  After this date we can observe a shift in the growth 
of the traffic and, after some rather irregular months, a 
modification of its dynamic. We will examine in the next 
section the length of time needed for the series to find a 
stable behavior again. We now focus on the link between 
arrivals and departures.  In order to understand this link, 
we perform an Ordinary Least Squares (OLS) regression 
of monthly arrivals over departures and identify the 
residuals.  

 
Table 1. Yearly passenger traffic at Blagnac Airport 
(thousands of passengers) 

Year Arrivals Departures 
1993 1,563.0 1,555.3 
1994 1,639.8 1,631.5 
1995 1,834.3 1,833.1 
1996 2,042.6 2,045.9 
1997 2,148.4 2,151.2 
1998 2,305.0 2,307.1 
1999 2,484.8 2,489.4 
2000 2,625.4 2,622.2 
2001 2,592.3 2,594.6 
2002 2,641.1 2,647.4 
2003 2,631.2 2,626.4 
2004 2,780.2 2,783.1 
2005 2,870.5 2,878.5 
2006 2,940.4 2,954.0 

 
 

 
Figure 2a.  Arrivals and Departures 
 

Figure 2b. Arrivals (solid) and Departures (dashed) around 
September 11, 2001.  
 
Examining the autocorrelation function (ACF) of the 
OLS residuals and the Partial Autocorrelation Function 
(PACF) which almost vanishes after Lag 12 (see Figure 
3), we choose a Seasonal Autoregressive Moving Average 
(SARMA) model to fit these residuals. We call “noise” 
the residuals of this second model. If the SARMA model 
is correctly chosen, this noise should be white noise. 
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Starting from this observation, in a second step, we 
estimate an ARMAX model (the X refers to the presence 
of an independent variable in the model) of arrivals; 
precisely we fit a linear model for arrivals against 
departures with a SARMA error. After some  

Figure 3.  Autocorrelations of OLS residuals: ACF and 
PACF. 
 
exploratory steps we obtain a SARMAX(1,4)(2,2)12 with 
some coefficients constrained to 0. In this notation, (1,4) 
refer to the AR and MA parameters for the error series, 
and (2,2)12 to the AR and MA parameters for the 
seasonal component of the error series.  Table 2 displays 
the results of estimating this model, and the resulting 
equation is given below.  Classical tools such MINIC 
(Minimum Information Criterion) which suggest 
tentative orders for the autoregressive and the moving 
average terms are not very helpful when seasonality is 
present1. The estimation and the t-statistics are given in 
Table 2, and the equation is displayed next. 
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Here B is the Backward or Lag operator defined by B 
Zt=Zt-1, B2 Zt=Zt-2, etc. The estimated variance of Zt is 
13.7. The quality of the fit is measured through the 
whiteness of the noise Zt. The Ljung-Box statistic, whose 
p-value is plotted on Figure 4, is based on the chi-square 
distance between a vector of k empirical autocorrelations 
and their theoretical counterpart which is 0 if the process 
is white noise. We conclude from Figure 4 that the Zt 
error of this model can be considered as white noise. We 
see that the intercept is significantly different from 0 

                                                 
1 The minic method was proposed by Hannan and Rissanen in 
1982. A practical presentation of it can be found in Box and al. 
(1994). 

while the t-statistic to test that the coefficient of the 
variable on departures is unity, equals (0.969 – 1) /  
0.011= -2.8182. This allows us to conclude that there are 
significantly less arrivals than departures each month.  
 
Table 2. ARMAX model of arrivals against departures 

Coefficient Value Standard error t-statistic 
ar1 -0.776 0.056 -13.86 
ma2 -0.330 0.085 -3.87 
ma4 -0.186 0.075 -2.49 
sar1 0.371 0.078 4.75 
sar2 0.561 0.089 6.29 
sma2 -0.704 0.081 -8.68 
Intercept 10.363 4.163 2.49 

 
A rough check of non existence of unit root in the 
autoregressive non seasonal part is given by  the value of 
the autoregressive equation at 1 : 1+0.776=  1.776  
which is far from 0 and for seasonal unit roots by the 
value of the seasonal part at 1 : 1 - 0.371-   0.561 = 0.068 
which is not too close to 0. We can consider that the 
series on departures and arrivals co-integrate.  
 

 
Figure 4.  SARMA errors Zt in the regression of arrivals 
over departures.  

2.2  Descriptive study of the traffic series 
 
From now on, we consider the series of passenger traffic 
at Toulouse-Blagnac airport, that is the sum of arrivals 
and departures each month, measured in thousands of 
passengers. We observe that it presents an increasing 
tendency noticeably attenuated after September 2001. 
The series also has a marked seasonality (Figure 5). 
Differences between monthly activities can be best 
understood on a monthplot (Figure 6). On this plot, each 
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time plot corresponds to a month over all the available 
years. The horizontal bar is the mean of the subseries. 
August is a low and regular activity month. We see also 
that the influence of 9/11 is very important on the 
months such as December, January, February and May 
while it is light on the months of July and August 

 
 

 
Figure 5. Yearly (top) and monthly (bottom) passenger 
traffic 
 
The normality of the series is examined through the 
Jarque-Bera normality test. For the full series, the series 
before 09/2001 and the series after, the p-values are 
respectively: 0.04282, 0.1249, and 0.7346. To get a better 
understanding of the differences between before and after 
9/11, we perform a Seasonal-Trend Decomposition 2  of 
the series (Table 3), restricting the series before to Sept 
1996  – Aug 2001 and the series after to Oct 2001 – Sept 
2006, so that both series have the same length. The 
interquartile ranges (IQR) of the components are given 
here in Table 3. 
 

 
Figure 6. Monthplot of traffic at Blagnac airport 

                                                 
2 See Cleveland et al. (1990) and the stl() function of R. 

 
Table 3.  Seasonal-Trend Decomposition of the arrivals; 
interquartile ranges 

 Seasonal Trend Remainder Data 
Before 23.733 65.54 7.6294 77.157 
After 46.336 40.32 12.758 58.121 

 
We observe that the seasonal IQR before is half the 
seasonal IQR after and the trend IQR before is 1.5 times 
that after. Thus we suspect that it is rather difficult to 
find a unique model able to capture the dynamic of the 
full series with only minor modifications from one period 
to another. The difference between the two periods is 
also apparent on the empirical autocorrelation functions 
(Figure 7. ACF of the traffic series, before and after 
9/11.). The series before is clearly non stationary while 
the series after seems more stationary. 

 

 
Figure 7. ACF of the traffic series, before and after 9/11. 

3.  Modeling the traffic time series 

3.1  Traffic before September 2001 
In order to evaluate the stability of our model 
specification we first model the series over the period 
01/1994 -  08/2000, then, predict the 12 next months and 
last, compare the prediction with the observed series. 
After some trials we arrive at a SARIMA(1,1,2)(0,1,1)[12] 
specification (displayed in the equation below) where the 
first order MA term is constrained to zero. We perform a 
Maximum Likelihood Estimation of the model; the 
Portmanteau test does not reject the whiteness of the 
noise but a Jarque-Bera normality test on the residuals 
gives a p-value of 0.007918. So, although the series does 
not display any obvious heteroscedasticity we try to 
model the logged series. 
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We obtain the following SARIMA model and estimated 
error variance: 
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The p-value for the normality test of residuals is now 
0.1236. To understand the predictive ability of this model 
for the interval September 2000 to August 2001, we 
simulate 1000 forecasts of these months and determine 
the percentile of the observed traffic with respect to the 
distribution of the corresponding forecasts. The 
simulation can rest on the normality assumption of the 
residuals on the log model or on bootstrapping the 
residuals. Results are summarized in Table 4; the tenth 
and ninetieth percentiles of the simulated predicted 
series, as well as the observed series are displayed in 
Figure 8. Table 4 contains percentiles of the observed 
value:  (1) when the series is not transformed and the 
estimation is achieved by Maximum Likelihood under the 
erroneous assumption of normality and errors are drawn 
from the estimated white noise distribution, (2) under the 
same assumption as (1) but with errors sampled with 
replacement in the observed residuals, (3) same steps but 
the series is log transformed, (4) under the same 
transformation as (3)  with errors drawn from the 
estimated white noise distribution. 
 
We see that log based estimation gives usually less 
extreme percentiles for the observed series.  We now re-
estimate the model using the series from Jan 1994 to Aug 
2001. The results of both estimations are summarized in 
the following table (Table 5). In order to evaluate the 
stability of the model we examine the position of the 
estimates from the first model (estimation 1), with respect 
to the 80% confidence intervals obtained from the 
second model (estimation 2).  We see that estimations 

are clearly within the confidence intervals, thus we may 
consider that the model is rather stable. 
 

 
Figure 8.  10% of 90% Quantiles for Prediction and 
Realization of Traffic, September 2000 to August 2001. 
 

3.2  Traffic after September 2001  
 
We examine now the series from October 2001 to 
October 2007. The time plot (Figure 2) suggests that it 
takes some time to go back for the traffic to return to a 
rather regular evolution. In order to find the date until 
which the series is not regular, we would like to fit a 
model on the regular part, then backcast the series until 
October 2001 and examine the discrepancy between the 
realized and predicted series. As is known and easily 
checked, if a series follows some ARMA model, the series 
obtained by time reversion follows the same model. Thus 
a simple way of achieving the desired backcast is to 
reverse the time, adjust a model on the beginning of this 
series and predict the end, that is the series which finishes 
on October 2001. 
 

 
Table 4.  Percentiles of Sept. 2000-Aug. 2001 observed traffic in simulated distributions from different prediction 
methods 
Month 1 2 3 4 5 6 7 8 9 10 11 12 
Normality based (1) 30.5  40.0  10.5  27.7  54.1  15.0   2.6  15.3   0.3  84.4   4.7   0.9 
Bootstrap based (2) 35.4  39.8  19.2  35.6  55.4  21.3   8.6  20.9   1.5  77.1  11.3   3.7 
Log (3) 45.3  47.6  33.4  48.5  67.4  37.2  17.3  41.9   6.9  83.8  24.4  21.3 
Log boot (4) 45.4  50.6  36.7  49.5  68.0  41.6 24.4  45.0  10.7  85.6  32.1  24.4 

 
Table 5. Estimated models for traffic excluding (Est.1) and including (Est. 2) the period September 2000-August 2001 

 Lag Est. 1 s.e. of est. 1 Est. 2 s.e. of est. 2 Lower bound Upper bound 
ar1 1 -0.769 0.121 -0.741 0.107 -0.85178 -0.63087 
ma2 2 -0.525 0.168 -0.486 0.148 -0.65624 -0.31666 
sma1 (seasonal) 12 -0.438 0.132 -0.515 0.127 -0.68724 -0.34341 
sigma2 (error variance)  0.00126  0.00114    
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On the first 67 months of the reversed series, (from 
October 2007 to April 2002) we identify a 
SARIMA(1,1,3)(0,1,1)12 model. Its maximum likelihood 
estimation is given by:  
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The estimated standard errors of the parameters are 
0.107, 0.190, 0.193, 0.144, 0.168 and the estimated 
variance of the error is 199. The Jarque-Bera normality 
test of the residuals gives a p-value of 0.1029. Thus we 
predict the series for the next six months, that is for 
March 2002 until October 2001, and we compute the 
percentiles of the realization with respect to the 
distributions of the forecast for each lead time. Low or 
high percentiles suggest a bad predictive ability of the 
model. 
 
From Figure 9, where time is reversed and ending on 
October 2001, and Table 6, we can consider that the 
series after 9/11 goes back to a regular behavior from 
January 2002 onwards. 
 

 
Figure 9.  Backcast of traffic, and 80% prediction intervals; 
estimation based on October 2007 to April 2002. 
 
 
Table 6.  Backcast of traffic from March 2002 to 
October 2001 

Date Observed 
traffic 

Prediction S.E. of 
prediction 

Percen-
tile 

2002 Mar. 465.65 459.25 14.317 0.67 
2002 Feb. 409.14 398.23 16.684 0.74 
2002 Jan. 398.98 406.79 16.938 0.32 
2001 Dec. 360.46 417.32 16.985 0.0004 
2001 Nov. 370.17 386.04 17.148 0.18 
2001 Oct. 417.17 463.14 17.166 0.004 

4. Measure of the influence of September 11 on 
the activity of the airport 

4.1 Introduction 

We want to measure the loss in traffic over a given 
period, caused by September 11. A classical tool for 
measuring the impact of an event on a series is 
intervention analysis. An example of intervention is the 
introduction of compulsory wearing of seat belts 
introduced on 31 Jan 1983 in Great Britain. This 
intervention causes a switch in the level of the series. The 
methodology known as Intervention Analysis is a tool to 
measure the effect of an event on the mean of a series. 
Intervention analysis is concerned not only with the 
estimation of the shift on the mean of a series but also 
with the description of the evolution of the mean of the 
series after  an intervention. It assumes that, up to a non 
constant mean, the series follows an ARMA model, 
which is not modified by the intervention. In this 
framework, intervention analysis looks for a model for the 
mean which may be a simple step function or a linear 
combination of  rational fractions of step and impulse 
functions, called transfer function. An intervention 
analysis can be seen as an ARMAX model where the 
mean follows a non linear model. Intervention analysis 
was popularized after the work of Box and Tiao (1975). 
Work by Abraham (1980) and Ledolter-Chan (1996) 
give some of the many applications of this technique. The 
results of an intervention analysis are included in the 
parameters of the estimated transfer function whose 
significance measures the influence of the intervention.  

However our aim when we measure the impact of 9/11 on 
airport traffic is not to model the adaptation of the traffic 
after 9/11 but to estimate the loss of traffic for each 
month over one or two years or the loss of traffic for some 
particular period. We may want also to evaluate the 
distribution of the loss for some lead time. To achieve this 
goal we proceed as follows. First, we make the assumption 
that the estimated model before the event would have 
been valid after it if the event had not happened. Next, 
we consider the time series after the event as given, and 
we then look for a good model of the series before the 
event and forecast the series at some lead time. The 
difference between the forecast and the series is the loss 
for this lead time. From the adjusted model we may 
simulate a large number of trajectories and measure the 
loss for each. We thus get the distribution of the loss for 
each lead time. Losses can be cumulated for several times. 
 
Our treatment assumes that the estimated model holds 
for the period of measurement. This model may be 
corrected with the help of economic forecasts established 
before the event. The simulation rests on the ability to 
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simulate the white noise underlying the model. If the 
normality assumption does not seem to hold, it may be 
preferable to bootstrap the error rather than simulate it 
from a normal distribution. A similar treatment might be 
considered, backcasting the series before the event from 
estimation after it and considering the “loss” between the 
backcast and the realization before the event. Now we 
proceed to the different steps of this approach. 

 

 

4.2 Prediction beyond September 2001 
 

To predict the traffic until December 2003, we use the 
model estimated over the interval, January 1993 – August 
2001, referred to as Est. 2 in Table 5. Of course such 
prediction is valid only if the dynamic of the series is not 
modified by an intervention or more predictable events, 
for instance, events based on macroeconomic forecasts. Figure 10. Distribution of simulated 2002 traffic; vertical 

bars from the left: observed traffic and 3 macro economic 
forecasts; a more pessimistic forecast is at 4790.  Simulated 
errors in top graph, bootstrapped errors in bottom graph. 

 
The point prediction of the traffic series yt, t =  Sept 
2001 to Dec 2003, which we abridge into y_{2001-
2003},  is the vector of  the  estimated conditional means 
of  these random variables given : (1) the series before 
and up to Aug 2001, (2) the estimated model on the log 
series and, (3) the normality assumption. However we 
want to predict not only the mean but also the 
conditional distribution of y_{2001-2003}. Given our 
framework, two paths may be considered: (1) rely entirely 
on the normality assumption to draw errors, simulate the 
log transformed series and take the exponential of it or 
(2) bootstrap the residuals and then simulate the paths. 
We shall consider both approaches. For the simulations 
we write the recurrence relation giving log(yt) as a 
function of its past and the error with initial values taken, 
for the AR part, from the observed series and, for the MA 
component,  the residuals from the estimation step. The 
error will be drawn from the estimated normal 
distribution in one case and bootstrapped from the 
residuals in the other case. For each month we thus get a 
number of simulated traffic measures that we can 
compare to the observed traffic. We therefore obtain a 
distribution of the monthly or yearly loss. Table 7 shows 
that bootstrap based and normality based simulations give 
rather similar results, which strengthens the normality 
assumption. 

 
Thus, considering the simulation under a  normality 
asumption, we find that the year 2002 loss lies between  
250 000 et 541 000 passengers at a 50% confidence 
level. The 2002 loss is about 7% of the expected traffic. 
 
Computational remarks.  Computations were run with 
the ARIMA function in R (2008). Shumway and Stoffer 
(2007) warn us about the peculiar behavior of the R 
arima() function when the model contains an  integrated 
part. The function simulate() was not used for the 
simulations because it does not seem to integrate initial 
conditions on the noise. 

5 Conclusion 
 
Intervention analysis tries to model the change on the 
mean of a series caused by an intervention. However 
consequences of an intervention might be of interest and 
may be difficult to derive from the result of such an 
analysis. In this article we suggest an alternative 
framework for studying the impact of an event on a series. 
First, we model the series before the event, next we 
simulate many trajectories from the estimated model for a 
time period starting from the date of the intervention, 
and we then compare the realized series with its 
intervention-free simulations. Contrary to intervention 
analysis, our approach does not assume any link between 
the model before and the model after the event. This 
approach may be used when some stable model can be 
assumed for the series. Simulating trajectories is a simple 

 
Yearly traffic forecasts for 2002, based on different 
hypotheses have been established by the Institut du 
Transport Aérien (ITA) and communicated to us by the 
Chamber of Commerce of Toulouse. They are: 4790, 
5540, 5550, and 6060 thousand passengers. We draw 
them on the histogram of the simulated traffic (Figure 
10). 
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Table 7.  Simulated loss and traffic (thousand passengers) 
  Loss - Simulations under normality assumption Loss - Bootstrap simulations 
Year Observed traffic 1st Qu.  Mean 3rd Qu. 1st Qu.  Mean 3rd Qu. 
2002  5288.5 250 394 541 238 380 524 
2003 5257.6 447     704 958 439   699   959 
  Traffic - Simulations under normality assumption Traffic - Bootstrap simulations 
Year Observed traffic 1st Qu.  Mean 3rd Qu. 1st Qu.  Mean 3rd Qu. 
2002  5288.5 5540 5680 5830 5530 5670   5810 
2003 5257.6 5700    5960 6220 5700   5960 6220 
 
 
tool to draw inference on linear and non linear 
functionals of the series or to circumvent non normal 
situations. The forecasting method should be not too 
sensitive to the most recent values of the series. In that 
respect, ARIMA models seem better suited than 
structural time series models such as Basic Structural 
Models (BSM) or exponential smoothing models. 
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	We want to measure the loss in traffic over a given period, caused by September 11. A classical tool for measuring the impact of an event on a series is intervention analysis. An example of intervention is the introduction of compulsory wearing of seat belts introduced on 31 Jan 1983 in Great Britain. This intervention causes a switch in the level of the series. The methodology known as Intervention Analysis is a tool to measure the effect of an event on the mean of a series. Intervention analysis is concerned not only with the estimation of the shift on the mean of a series but also with the description of the evolution of the mean of the series after  an intervention. It assumes that, up to a non constant mean, the series follows an ARMA model, which is not modified by the intervention. In this framework, intervention analysis looks for a model for the mean which may be a simple step function or a linear combination of  rational fractions of step and impulse functions, called transfer function. An intervention analysis can be seen as an ARMAX model where the mean follows a non linear model. Intervention analysis was popularized after the work of Box and Tiao (1975). Work by Abraham (1980) and Ledolter-Chan (1996) give some of the many applications of this technique. The results of an intervention analysis are included in the parameters of the estimated transfer function whose significance measures the influence of the intervention. 
	However our aim when we measure the impact of 9/11 on airport traffic is not to model the adaptation of the traffic after 9/11 but to estimate the loss of traffic for each month over one or two years or the loss of traffic for some particular period. We may want also to evaluate the distribution of the loss for some lead time. To achieve this goal we proceed as follows. First, we make the assumption that the estimated model before the event would have been valid after it if the event had not happened. Next, we consider the time series after the event as given, and we then look for a good model of the series before the event and forecast the series at some lead time. The difference between the forecast and the series is the loss for this lead time. From the adjusted model we may simulate a large number of trajectories and measure the loss for each. We thus get the distribution of the loss for each lead time. Losses can be cumulated for several times.
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