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The aim of this paper is to illustrate three modern statistical methods through a case study, which arises from a scientific 

collaboration between Air Normand on the applied side and Université Paris Descartes and the Institut National des 

Sciences Appliquées (INSA) in Rouen on the academic side.  The problem is to analyze PM
10

 pollution during 2004-

2006 in Rouen area using six different monitoring sites and to quantify the effects of variables of different types, mainly 

meteorological versus other pollutant measurements. Three methodologies – random forests, mixtures of linear models, 

and nonlinear additive models – are used in the analysis. In addition to the statistical interest of the study, we give 

detailed software oriented results and complete code using three freely available R packages. 
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1.  Introduction 
 
The aim of this paper is to illustrate three modern applied 

statistical methods through a case study. Let us briefly 

sketch the context of the work. Suspended particles in 

the air are of various origins, natural or linked to human 

activity, and are of variable chemical composition. Air 

Normand, the observatory of air quality in Haute-

Normandie, a coastal Northwest French area, has a 

network of a dozen stations measuring every quarter of an 

hour, sometimes going back to 10 years, the 

concentrations in PM
10

 particles (particles whose 

diameter is less than 10 µm). Other monitoring stations 

can have more recent data for smaller particles such 

PM
2.5

 (with a diameter less than 2.5 µm), and some 

results on the composition of PM
10

 particles collected 

during time-limited specific studies. 

European regulations stipulate that the PM
10

 daily 

average cannot exceeds 50 µg/m
3
 more than 35 days per 

year. The objectives of this paper are organized around 

two axes: to characterize weather patterns leading to the 

extent of an exceedance through the joint statistical 

analysis of PM
10

 concentrations and meteorological 

parameters, and to distinguish situations in which the 

origin of the particles is mainly local or on the contrary 

distant or natural. 

 

The analysis carried out in this paper is based on the so 

called TEOM (Tapered Element Oscillating 

Microbalance) PM
10

 concentrations from 2004 to 2006 

measured by Air Normand, and the associated weather 
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data provided by Météo France, the French national 

meteorological service. 

 

Before giving the outline of the paper, let us say a few 

words of the bibliography about the statistical analysis of 

PM
10 

particles.  It contains hundreds of references, so we 

prefer here to consider a few typical examples. They differ 

in their objectives and in the statistical tools used in the 

analysis. 

 

Salvador et al. (2004) identify and characterize PM
10

 

sources in Madrid using traditional statistical methods 

including Principal Component Analysis (PCA), linear 

regression and PCA regression. The pollution sources are 

identified via chemical measurements and back 

trajectories. Related to the same problem, let us mention 

the paper by Chavent et al. (2007) proposing in a case 

study a methodology for determining the apportionment 

of air pollution by source in a French urban site. Starting 

from measurements of chemical composition data, the 

sources are identified via a factor analysis and then the 

apportionment by source is completed by a receptor 

modeling based on a positive matrix factorization. 

 

Karaca et al. (2005) deal with the statistical 

characterization of atmospheric PM
10

 and PM
2.5

 

concentrations at a non-impacted suburban site in 

Istanbul, using robust regression tools. A simple non 

linear model is fitted and the quality of the model is 

assessed carefully, identifying seasonal behavior and 

prevalent meteorological conditions. 

 

Smith et al. (2001) focus on a problem close to the one 

examined in our paper: to identify factors influencing 

measurements of PM
10

 during 1995-1997 in London, 

using analysis of variance tools. From this point of view, 

our paper provides some methodological insights by using 

three modern non parametric statistical methods 

(random forests, mixture of linear models and nonlinear 

additive models) to investigate a similar problem. 

 

The outline of the paper is the following. After this 

introduction, Section 2 states the context and briefly 

presents the data. Section 3 introduces and motivates the 

three main methods used to handle the problem. Section 

4 is devoted to the use of random forests focusing on the 

relative importance of variables and variable selection 

issues as well as the marginal effects of variables. Section 

5 uses two original climatic variables to partition the data 

and model each cluster using a partially nonlinear 

additive model. Section 6 explores cluster-wise linear 

modeling of PM
10

 pollution. Finally, Section 7 focuses on 

an attempt of a quantification of what we call in a broad 

sense a local part and a regional part of PM
10

 pollution. In 

addition the Appendix provides information about online 

material: full R code as well as the complete data set. 

 

2.  Data 
 

2.1 Which pollution stations to select? 

 

Among twelve monitoring stations for PM
10

, we have 

selected a small group of six stations reflecting the 

diversity of situations. For the city of Rouen (see the map 

in Figure 1 to get an idea of its localization), we consider 

the urban station JUS, the traffic station GUI, the second 

most polluted in the region, and GCM which is located in 

an industrial area in order to have the widest panel. In Le 

Havre, we have kept the stations REP (the most polluted 

in the region) and HRI located at the seaside. Last, we 

focus on the station AIL near Dieppe, because it is rural 

and coastal, and a priori hardly influenced by social and 

industrial activity. 

 

Grouping by categories: JUS and HRI are background 

urban monitoring sites, GUI and REP are urban sites 

close to traffic, GCM is industrial and AIL is rural. One 

can find in Figure 1 the map of the Haute-Normandie 

area and the localization of the different monitoring sites. 

 

 

Figure 1.  Map of the Haute-Normandie area locating the 

different monitoring sites of Air Normand and Météo 

France (blue squares: Air Normand temperature gradient 

monitoring sites, red dots: Air Normand monitoring sites, 

windsocks: Météo-France sites). 
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Table 1.  Basic statistics about the daily TEOM PM

10
 

concentrations (in μg/m
3

) for 2004-2006 

 JUS GUI GCM AIL HRI REP 

Min. 6 6 5 3 6 7 

1st Qu. 16 20 14 13 15 21 

Mode 16 23 13 17 14 24 

Median 20 25 19 16 19 26 

Mean 21.19 26.13 20.69 16.89 21.08 28.21 

3rd Qu. 25 31 25 20 24 33 

Max. 95 103 90 55 75 76 

Std 8.5 9.8 8.9 6.1 9.3 9.9 

NaN's 10 7 11 2 42 18 

 

Table 2.  Number of daily level exceedances 

 JUS GUI GCM AIL HRI REP 

≥ 25µg/m
3
 253 511 258 95 236 566 

≥ 30µg/m
3
 136 320 148 41 144 384 

≥ 50µg/m
3
 9 22 7 4 20 42 

≥ 75µg/m
3
 4 4 2   1 

≥ 85µg/m
3
 2 3 2    

 

 

Figure 2.  Boxplots of daily TEOM PM
10

 concentrations for 

the monitoring sites. 

 

The analyzed data are the TEOM PM
10

 daily mean 

concentrations and concern the period 2004-2006 (1096 

days). Table 1 contains some basic statistics about the 

PM
10 

concentrations coming from the six monitoring sites 

of Air Normand. 

 

As expected, GUI and REP, which are both urban 

monitoring sites close to traffic, have a higher average 

level of pollution and AIL, which is a rural site and a 

priori not locally polluted, has the smallest one. For each 

monitoring site, the median is less than the mean which 

means that the distribution is not symmetric with some 

high values, as confirmed by the boxplots of Figure 2. 

 

Table 2 of level exceedances shows some high disparities 

between the monitoring sites and highlights the small 

number of daily exceedances of 50 µg/m
3
. Finally, let us 

mention that only the sites of Rouen measure PM
10

 

concentrations greater than 85 µg/m
3
. 

 

2.2 Which meteorological predictors to consider? 

 

To analyze PM
10

 concentrations, we consider daily 

meteorological data coming from three monitoring sites 

of Météo France, MFB at Rouen, MFD at Dieppe and 

MFH at Le Havre (see Figure 1). The different 

meteorological variables, which are calculated from 

hourly measurements during the period 0h-24h GMT, are 

the following: 

 T.min, T.moy and T.max the daily minimum, mean 

and maximum temperature (in °Celsius), respectively; 

 VV.max and VV.moy the daily maximum and mean 

wind speed (in m/s); 

 PL.som the daily total rain (in mm); 

 PA.moy the daily mean atmospheric pressure (in 

hPa); 

 HR.min, HR.moy and HR.max the daily minimum, 

mean and maximum relative humidity (in %), 

respectively; 

 DV.dom the most frequently observed wind direction 

(in °); 

 DV.maxvv the wind direction associated with 

VV.max (in °). 

 

We also have the temperature gradients GTrouen and 

GTlehavre measured by two monitoring sites of Air 

Normand, respectively denoted by ESS at Rouen and 

CAU at Le Havre in Figure 1. The temperature gradient 

is defined as the daily maximum of the hourly differences 

between the temperature at 3 meters altitude and the 

temperature at 180 meters altitude for ESS and 110 

meters altitude for CAU. 

 

Before entering into details about meteorological 

variables, let us mention that, in what follows, we 

associate to each pollution station the nearest 

meteorological station. 

 

One can find in Table 3 some basic statistics about the 

variables coming from the Météo France monitoring site 

MFB located at Rouen, and in Table 4 some information 

about the temperature gradients, coming from the Air 

Normand monitoring network. 
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Tables 5 and 6 give the distributions of the wind 

direction variables DV.dom and DV.maxvv, measured at 

MFB. 

 

Table 3. Basic Statistics of the Meteorological Variables at 

MFB in Rouen 

 Min. 1st Qu. 
Med-

ian 
Mean 3rd Qu. Max. 

T.min °C -8.200 2.300 7.500 6.948 11.600 19.700 

T.max °C -2.00 8.50 14.90 14.44 19.90 34.60 

T.moy °C -5.23 5.47 11.28 10.70 15.63 26.00 

VV.max m/s 2.00 5.00 6.00 6.51 8.00 16.00 

VV.moy m/s 1.19 2.905 3.792 4.099 5.042 10.17 

PL.som, mm 0 0 0 1.722 1.0 43.0 

PA.moy, hPa 986 1012 1018 1018 1023 1041 

HR.min % 19.00 52.00 64.00 64.17 76.00 99.00 

HR.max % 71.00 93.00 95.00 94.05 97.00 99.00 

HR.moy % 44.50 75.23 82.88 81.58 88.92 99.00 

 

Table 4.  Basic Statistics about the Temperature Gradients 

 
Min. 1st Qu. 

Med-

ian 
Mean 3rd Qu. Max. 

GTrouen °C -1.5 0.1 1.2 1.649 2.8 10.3 

GTlehavre °C -1.1 -0.3 0.3 0.6412 1.3 6.4 

 

Table 5. Distributions of the Wind Direction DV.dom, at MFB 

Direction N NNE NE ENE E ESE SE SSE 

 0° 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 

Frequency 113 61 74 54 42 36 35 71 

Direction S SSW SW WSW W WNW NW NNW 

 180° 202.5° 225° 247.5° 270° 292.5° 315° 337.5° 

Frequency 116 77 70 48 149 67 14 44 

 

 

Table 6.  Distribution of the Wind Direction DV.maxvv, at 

MFB 

Direction (°) 10 20 30 40 50 60 70 80 90 100 110 120 

Frequency 28 40 30 39 41 26 24 24 16 17 27 7 

Direction (°) 130 140 150 160 170 180 190 200 210 220 230 240 

Frequency 18 13 40 40 11 18 43 60 50 42 34 32 

Direction (°) 250 260 270 280 290 300 310 320 330 340 350 360 

Frequency 33 21 41 61 39 26 20 18 23 20 41 30 

 

One can find on the diagonal plots of Figures 3 to 5 the 

histograms (with in addition the estimated densities 

except in Figure 4) of the main meteorological variables 

measured at Rouen. Let us make two comments. The 

distribution of the total rain PL.som is very asymmetric. 

The distributions of T.min, T.moy, T.max, HR.min and 

PA.moy are almost symmetric while the distributions of 

the other variables are asymmetric. 

 

One can also find scatterplots in the off-diagonal plots of 

Figures 3 to 5. Let us examine more carefully those 

involving PM
10

 concentration and the different 

meteorological variables measured in Rouen. We can 

note on Figure 3 that the high pollution episodes (i.e. 

daily PM
10

 concentrations exceeding 50µg/m
3
) only arise 

for low temperatures. On Figure 4, the higher the rain, 

the smaller the PM
10

 concentration. This remark also 

holds for the wind speed. In addition, episodes appear 

only for low wind speed and when there is no rain. 

Finally, we can see on Figure 5 that the lower the 

atmospheric pressure, the smaller the PM
10

 

concentration, and episodes only arise for high 

atmospheric pressure. 

 

 

Figure 3. Histograms and scatterplots of PM
10

 at JUS and 

the temperatures T.min, T.moy and T.max at Rouen. 

 

 

2.3 Which pollutants in addition to PM
10

? 

 

In addition to PM
10

, three other pollutants are measured: 

NO, NO
2
 and SO

2
. Nitrogen oxides NO and NO

2
 are 

retained as markers of social activity and are especially 

related to traffic while sulfur dioxide SO
2
 captures the 

consequences of industrial activity. 

 

In order to get a fair picture of local pollution, it seems 

interesting to augment the data for three of the six 

stations by using pollutants measured nearby in order to 

have a complete picture for pollutant observations. More 

precisely, at GUI the SO
2
 is not measured, so we use the 

SO
2
 data collected at JUS. At Le Havre, we complete the 

data coming from REP with the SO
2
 data measured at 

MAS, which is a background urban monitoring site 

located in the center of Le Havre (see Figure 1), and we 
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complete the data coming from HRI with the NO and 

NO
2
 data also measured at MAS. Finally, let us mention 

that for the rural station AIL, there is no available 

measurements of these three pollutants. 

 

 

Figure 4. Histograms and scatterplots of PM
10

 at JUS and 

the meteorogical variables PL.som, VV.moy and VV.max at 

Rouen. 

 

 

Figure 5. Histograms and scatterplots of PM
10

 at JUS and 

the meteorological variables PA.moy at Rouen, GTrouen 

and GTlehavre. 

 

 

Figure 6. Histograms and scatterplots of the daily 

concentrations of the pollutants at JUS. 

2.3 Which pollutants in addition to PM
10

? 

 

In addition to PM
10

, three other pollutants are measured: 

NO, NO
2
 and SO

2
. Nitrogen oxides NO and NO

2
 are 

retained as markers of social activity and are especially 

related to traffic while sulfur dioxide SO
2
 captures the 

consequences of industrial activity. 

 

In order to get a fair picture of local pollution, it seems 

interesting to augment the data for three of the six 

stations by using pollutants measured nearby in order to 

have a complete picture for pollutant observations. More 

precisely, at GUI the SO
2
 is not measured, so we use the 

SO
2
 data collected at JUS. At Le Havre, we complete the 

data coming from REP with the SO
2
 data measured at 

MAS, which is a background urban monitoring site 

located in the center of Le Havre (see Figure 1), and we 

complete the data coming from HRI with the NO and 

NO
2
 data also measured at MAS. Finally, let us mention 

that for the rural station AIL, there is no available 

measurements of these three pollutants. 

 

Let us give some elements about the distributions of the 

different pollutants at the station JUS of Rouen, as well 

as the correlations with the PM
10

. As it can be seen in 

Table 7 and Figure 6, the pollutant distributions are very 

asymmetric with few extreme values. Figure 6 shows the 

different scatterplots. In particular, we observe that if the 

pollution levels of NO, NO
2
 and SO

2
 are high, then the 

pollution level of PM
10

 is also high. 

 

Table 7.  Basic Statistics of the Pollutant Concentrations (in 

μg/m3) Collected at the Urban Monitoring Site JUS of Rouen 

 PM
10

 NO NO
2
 SO

2
 

Min. 6.00 0.00 2.00 0.00 

1st Qu. 16.00 3.00 21.00 4.00 

Median 20.00 7.00 31.00 6.00 

Mean 21.19 13.43 31.45 7.83 

3rd Qu. 25.00 16.00 40.00 10.25 

Max. 95.00 253.00 92.00 45.00 

NA's 10 6 7 12 

 

3.  Models 
 

3.1 Which models to use? 

 

Random forests are a very powerful method for prediction 

and variable importance quantification. By computing 

the marginal effects of each variable on the PM
10

 

pollution, we get a rough idea of the shape of its 

influence, distinguishing pollutants and climatic 

variables. In addition, variable importance scores allow 

one to identify the most influential variables. However a 
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random forest does not define an explicit model since it 

builds a prediction model which is an aggregation of 

regression trees. So two additional models are then 

considered. Both are regression models by classes built 

according to different principles. 

 

The first one is based on generalized additive models and 

proposes weather type dependent nonlinear additive 

models (in fact partially linear if some components are 

linearizable). The classes are explicit and related to 

weather types (three in general) but they are rigid since 

they are based on only two variables selected a priori: rain 

and wind direction. Indeed they lead to explicit and easy 

to understand classes with predictors that have a highly 

nonlinear effect on PM
10

. 

 

The second one is based on mixtures of linear models and 

builds also clusterwise linear models but the building 

strategy combines more closely clustering and regression 

fitting: the classes are unknown as well the model in each 

class and the whole model is optimized using an iterative 

algorithm. This model makes for a more flexible 

classification as well as simpler models within a class but 

of course the classes are less directly interpretable. 

 

Let us briefly introduce the principle of each model in the 

next three paragraphs before using them to model PM
10

. 

 

3.2 Random forests 

 

Random forests (RF henceforth) is a popular and very 

efficient algorithm, based on model aggregation ideas, for 

both classification and regression problems. Introduced by 

Breiman (2001), the principle of random forests is to 

combine many binary decision trees built using several 

bootstrap samples coming from the set of observations 

and choosing randomly at each node a subset of 

explanatory variables. More precisely, with respect to the 

well-known CART (see Breiman et al. 1984) model 

building strategy performing a growing step followed by a 

pruning one, the two main differences are: first, at each 

node, a given number of input variables are randomly 

chosen and the best split is calculated only within this 

subset and second, no pruning step is performed so all the 

trees are maximal trees. 

 

In the random forest framework, the most widely used 

score of importance of a given variable is the increase in 

the mean of the error of a tree in the forest when the 

observed values of this variable are randomly permuted in 

the so-called out-of-bag sample. The higher the 

importance, the stronger the variable influence. 

 

The associated R package is randomForest which is 

based on the initial contribution of Breiman and Cutler 

(2005) and is described in Liaw and Wiener (2002). It 

appears to be very powerful in a lot of applications (see 

Genuer et al. 2008). 

 

This method is applied to the pollution data set in 

Section 4. 

 

3.3 Non-linear additive models 

 

Nonlinear additive regression models of the form 

    (1) 

where Z is a real-valued dependent variable,  

are the explanatory variables, µ is a constant and ε is an 

unobservable noise, have been widely used and studied 

since the pioneer work by Breiman and Friedman (1985), 

Buja et al. (1989) and Hastie and Tibshirani (1990). Such 

models are particularly attractive since they represent an 

interesting compromise between the classical linear 

model , and the fully non-

parametric one . Indeed with 

respect to the linear model, considerable additional 

flexibility is given by the allowed nonlinear effect of each 

explanatory variable without losing ease of interpretation. 

In addition with respect to the fully nonparametric 

model, the separable model (1) is more explicit and can 

be estimated without suffering from the so-called curse of 

dimensionality (Stone 1986) which is the main drawback 

of the unstructured nonparametric regression model. 

The associated R package is mgcv developed by Wood 

(2006). The nonlinear functions are estimated using 

penalized regression splines.  This method is applied to 

the pollution data set in Section 5. 

3.4 Mixture of linear models 

Finite mixture models are classical in statistics (see 

McLachlan and Peel 2000) and have been recently 

extended by mixing standard linear regression models. 

The main hypothesis is that observations come in some 

unknown proportions from a mixture of s components, 

which are modeled by linear models. Then, the purpose is 

to estimate the parameters of each linear model. In the 

clustering context, each object is supposed to be 

generated by one of the components of the mixture 

model being fitted. The partition is derived from these 

parameters using the maximum a posteriori (MAP) 

principle from the posterior probabilities for an object to 

belong to a component. 



- 7 -  Analyzing PM
10

 pollution in Rouen / Jollois et al. 

 
 
Finite mixture models with a fixed number of 

components are usually estimated with the expectation-

maximization (EM) algorithm within a maximum 

likelihood framework (Dempster et al. 1977). This 

algorithm iteratively repeats two steps until convergence. 

The first step E computes the conditional expectation of 

the complete log-likelihood, and the second one M 

computes the parameters maximizing the complete log-

likelihood. 

In real applications the number of components is 

unknown and has to be estimated. A classical approach is 

to then fit models with an increasing number of 

components and to compare them using the BIC criterion 

(Schwarz 1978). 

To compute mixture of linear regressions, we use the 

flexmix R package, described in Leisch (2004), and 

Gruen and Leisch (2007).  This method is applied to the 

pollution data set in Section 6. 

4.   Random Forests 

For each model, one can find in sections 4 to 6 a quite 

similar outline. First, we briefly introduce the general 

strategy and the main commands to fit the model using 

the corresponding R package, with data from the station 

JUS. Then, the estimated models across stations are 

considered for description and comparison purposes. 

4.1 Random forest for JUS 

The first command allows to build a random forest from 

the data of the JUS station using mtry=√p input variables 

randomly chosen among the p original variables at each 

split and using ntree = 500 trees in the forest: 

res <- randomForest (formula (jus_comp), 

data = jus_comp , importance = TRUE ) 

The training performance is given by the explained 

variance which is about 58%. 

The second command allows one to compute the 

estimated marginal effect of the variable x
i
. It is obtained 

by mimicking partial integration of the forest, i.e. the 

predicted regression function, using a sum along k grid-

points as: 

 

where x
i
 stands for the variable for which partial 

dependence is evaluated, and  stands for the other 

variables. The following command computes the marginal 

effect for NO variable, presented in Figure 7: 

partialPlot (res, jus_comp , 'NO', main = 

'Marginal effect - NO') 

 

The third command (importance(res)) allows to 

extract from the forest the score of permutation 

importance of a given variable as the increase in the 

mean of the prediction error of a tree in the forest (MSE) 

or a second measure (not used here) based on the total 

decrease in node impurities (residual sum of squares in 

regression). Figure 8 is obtained by: 

varImpPlot (res, sort =T, main = 'RF - 

Variable importance ') 

 

4.2 Marginal effects across the stations 

The typical useful estimated marginal effects of the main 

explanatory variables are collected in Figure 9. The 

marginal effects of pollutants are still increasing as  

 

 
Figure 7.  Marginal effect of NO on PM

10
, measured at JUS 

 

expected, looking roughly linear, or slightly convex or 

concave depending on the pollutant and the station.  

The marginal effect of rain is decreasing and reflects a 

washing effect.  The effects of temperature are nonlinear: 

positive when it is cold or hot, zero or negative for 

medium temperature. 

For wind direction effects, there are two situations (see 

Figure 10). For the stations GCM, JUS, AIL, it shows a 

major east/west axis, while for the stations GUI, REP, 

HRI, it highlights a north/south inhibitor axis. 

For the effects of wind speed, we must distinguish three 

situations (see Figure 11): inhibitor for stations 

downtown Rouen JUS, GUI, decreasing (then slightly 
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increasing outside the city of Rouen) for GCM, REP, HRI 

and finally increasing for the rural station AIL. The 

behavior for AIL is the only one which is, at first sight, 

surprising. It is due to the lack of local pollution sources 

combined with a low global level of pollution which lead 

to consider imported pollution as the major source of 

pollution at AIL, explaining the amazing increasing effect 

of wind speed. 

 
Figure 8.  Variable importance for JUS 

 

 

Figure 9.  Typical marginal effects on PM
10

 of main 

explanatory variables 

The effects of relative humidity are of very low 

importance and are very rarely useful in the remainder of 

this paper. Note that the minimum and maximum effects 

are different: increasing and decreasing respectively. 

The marginal effect of atmospheric pressure is increasing 

as well as the ones of temperature gradient as expected. 

In addition, the temperature gradients of Le Havre and 

Rouen give very similar information and are equally 

important. 

So the main conclusion at this stage is twofold. The 

marginal effects of pollutants are increasing, and can be 

considered as good markers of local pollution effects 

useful for PM
10

 modeling. For the meteorological 

variables we distinguish (eliminating HR which is 

unimportant) those who have a rather decreasing effect 

on pollution: PL and VV (for all stations except AIL); 

those who have a favorable effect (increasing): GT, PA 

and VV (for AIL); and those having a non monotonic 

effect: T and DV. 

4.3 Random forest variable importance across stations 

For each of the six stations we calculate the individual 

variable importance considering a random forest model 

involving all the variables. One can find here a synthesis 

organized following the results of the previous section. 

To define the importance of a group of variables, we use 

the following rule (proposed by Genuer et al. 2008): if the 

variables are sufficiently redundant, or more weakly, have 

similar effects on PM
10

 concentrations then the 

importance of a group is defined as the maximum 

importance. Thus, we can directly compare groups of 

variables. So, considering the four groups given by the 

pollutants (separating NO
x
 from SO

2
) and the 

meteorological variables, distinguishing those having a 

negative impact or positive or mixed respectively, we 

obtain the results of Table 8: 

The importance of the three groups of weather variables 

are nearly equal to 20, both for a given station and 

between the stations, except for that of PA at GUI which 

reached 30. However, the importance of pollutants 

fluctuates much more: from 29 to 49 except 0 for AIL 

since no measurement of pollutants is done. 

In both traffic stations (GUI and REP) NO
2
 dominates 

and its importance takes similar values (41 and 45). For 

the industrial station (GCM), the importance of pollutant 

SO
2
 is about 39, which is high. For both urban 

background stations (JUS and HRI), we observe a 

different importance for SO
2
: 28 for JUS (where NO

2
 

slightly dominates) and 49 for HRI (where NO
2
 measured 

at MAS is less important). 
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Figure 10.  Marginal effects on PM
10

 of wind direction. On 

the top JUS, on the bottom REP. 

 

 

Table 8.  Random forest variable: importance across 

stations 

 Pollutant Neg. Meteo. 

Pos. 

Mixed 

GCM Rouen, 

industrial 

39 (SO
2
) 23 (PL) 20 (GT) 21 (T) 

JUS Rouen, 

urban 

28 (NO
2
) 

22 (SO
2
) 

19 (PL) 21 (GT) 19 (DV) 

GUI Rouen, 

traffic 

41 (NO
2
) 

18 (SO
2
) 

18 (PL) 32 (PA) 19 (T) 

AIL Dieppe, 

rural 

 15 (PL) 23 (PA) 21 (DV) 

REP Le Havre, 

traffic 

45 (NO
2
) 

31 (SO
2
) 

20 (VV) 24 (GT) 19 (T) 

HRI Le Havre, 

urban 

49 (SO
2
) 

22 (NO
2
) 

16 (VV) 18 (GT) 22 (T) 

 

 

 

 

Figure 11.  Marginal effects on PM
10

 of wind speed (from 

top to bottom).  Graphs show, in turn, JUS, REP and AIL. 

 

5 Conditional nonlinear additive models 

5.1 Conditional nonlinear additive models for JUS 

For each station, the approach is at first to partition the 

days of years 2004 to 2006, depending on weather 

patterns based on the quantity of rain (variable PL.som) 
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and the wind direction (variable DV.maxvv). Recall that 

these two meteorological variables are preferred on the 

one hand for their segmentation power on the average 

level of PM
10

 pollution and on the other hand for their 

highly nonlinear effect on PM
10

. This segmentation step 

is performed using the CART method and the associated 

R package rpart to build a binary regression tree 

explaining PM
10

 concentration by the two selected 

weather variables. The optimal splits obtained by 

maximizing the decrease in explained variance define 

weather types as well as a partition of the set of days. 

Three classes are defined but they may differ between 

stations. 

The classes obtained for JUS come from the regression 

tree given by Figure 12. 

Since the class of days with rain and wind direction 

DV.maxvv less than 185° is too small to correctly fit a 

nonlinear additive model, we prefer not to split the class 

of rainy days and therefore only consider three classes. 

The resulting clusters are characterized by the elements 

given in Table 9.  The distributions of PM
10

 across the 

classes, given in Figure 13, appear to be well separated. 

 

In a second step, a nonlinear additive model is fitted for 

each weather type and the global model is given by the 

three conditional models together with the weather type 

definition. 

 

Figure 12. Station JUS: regression tree fitting the PM
10

 

concentration using PL.som and DV.maxvv 

 

 

Table 9.  Station JUS – means and frequencies of PM
10

 in 

CART clusters 

 PL.som>0 PL.som=0 

  165° ≤ DV.maxvv DV.maxvv < 165° 

Mean 17.05 21.64 24.85 

Frequency 349 353 330 

 

For a given weather type, a sub-model is built according 

to the following strategy. We start by fitting a nonlinear 

additive model involving all the explanatory variables 

and then apply the following descending strategy: 

 

1. elimination of variables whose effects are 

considered as non significant; 

2. elimination of redundant variables (even if they 

have a significant effect); 

3. iterate steps 1 and 2 if necessary; 

4. linear modeling of weakly nonlinear effects. 

 

Of course, such strategy cannot be applied automatically 

without caution, as usual in such descending variable 

selection approach. 

 

 

Figure 13.  Boxplots of PM10 concentrations across 

clusters, JUS station, Rouen. 

 

For example, let us consider the class of days without rain 

(PL.som=0) and a wind direction DV.maxvv less than 

165°. The construction strategy is as follows. We begin 

with the R instruction: 

 

res <- gam (PM10 ~ s(NO) + s(NO2) + s(SO2) + 

s(T.max) + s(T.min) + s(VV. moy) + s(VV. max) + 

s(PA. moy) + s(GTlehavre) + s(GTrouen) + s(HR.max) 

+ s(HR. moy ) + s(HR.min) + s(DV. maxvv) + s(DV. 

dom), data = jus_comp, subset = (DV.maxvv <165) & 

(PL. som ==0)) 

 

and we proceed as follows: 

1. successively eliminate the explanatory variables 

GTlehavre, GTrouen, VV.moy, HR.max, T.min, 

DV.dom, HR.min; 

2. linearly model the effects of VV.max and NO2. 

 

The final model is obtained using the R commands: 

 

res2 <- gam (PM10 ~ s(NO) + NO2 + s(SO2) + 

s(T.max) + VV.max + s(PA. moy) + s(HR. moy) + 

s(DV. maxvv),data = jus_comp, subset = (DV.maxvv 

<165) & (PL. som ==0))  
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Figure 14.  Station JUS: days without rain and wind 

direction DV.maxvv<165°.  Nonlinear effects of NO, SO2, 

T.max, PA.moy, HR.moy and DV.maxvv. 

 

The estimated nonlinear effects of the variables NO, SO
2
, 

T.max, PA.moy, HR.moy and DV.maxvv are presented 

in Figure 14. Except for HR.moy, they are comparable to 

the marginal effects obtained with random forests. 

 

The performance of the overall model is evaluated using 

two criteria: the explained variance given by the variance 

of estimated PM
10

 divided by the variance of observed 

PM
10

, and the explained deviance equal to 1 minus the 

variance of residuals divided by the variance of observed 

PM
10

. Let us note that, for the linear regression model, 

both quantities coincide. In addition, as usual the plot of 

(observed PM
10

, estimated PM
10

) allows to assess visually 

model quality and in particular the estimation quality for 

episodes, i.e. daily PM
10

 concentrations exceeding 50 

µg/m
3
. 

 

We find in Figure 15 the plots of (observed PM
10

, 

estimated PM
10

) associated with the three submodels and 

the global one. These plots are of good quality. We can 

also mention that many episodes are well estimated, and 

only two episodes are badly estimated, with predicted 

values less than 30 µg/m
3
. 

 

As mentioned by a reviewer, the top left diagram seems 

to show not only more scatter than with the other 

variables, but also some bias and it seems to indicate that 

perhaps a three state rainfall variable, no rain, light rain 

and heavy rain might be more useful. In fact, it is not the 

case and this probably comes from the fact that such 

short-scale statistical models necessarily omit some 

variables, which are better taken into account using 

dynamical chemical models requiring much more data 

and a more extensive modeling effort.  

 

 

 

Figure 15. Station JUS, plots (observed PM10, estimated 

PM10). 

 

Let us describe (without details) this short suggested 

additional investigation in order to improve the model 

associated with the rainy days. Two GAM models have 

been fitted with a variable PL.bin, which is a factor based 

on PL.som:  

 

 the first one with PL.bin = 1 if PL.som ≤  9, 2 if  9 < 

PL.som ≤  19 and 3 otherwise; 

 the second one with PL.bin = 1 if PL.som ≤ 6 and 

PL.bin = 2 otherwise, where the value of the 

threshold 6 is obtained using CART.  

 

For each model, the performance is not improved, the 

percentage of explained variance is the same and the bias 

remains.  

 

5.2 Conditional GAM across stations 

 

Table 10 gives some characteristics to compare 

conditional GAM models across stations. 

 

It should be noted that, except for stations HRI and AIL 

located on the seafront, the most discriminant variable, 

defining the first regression tree split, is always rain 

PL.som. The obtained weather types are close to each 

other: we distinguish rainy days and days without rain, 

and for these last ones, we separate wind direction from 

east and from west. The percentage of explained variance 

is good for stations JUS and REP. It becomes good for 

GUI and HRI when the SO
2
 measured at JUS and the 

NO
x
 measured at MAS respectively are added to the 

model. They are less good for stations GCM and AIL. 

Probably, for these stations one important piece of 

information is missing: loads at the cereal grain port 

located at Rouen north and near the station GCM and, 

for AIL, one piece of information about air mass 

movements. 
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Table 10.  Conditional GAM models across stations: 

weather types and performance. 

Station 
First split 

variable 
Partition 

Explained 

variance 

JUS PL.som 

PL.som > 0 

PL.som=0, DV.maxvv < 165° 

PL.som = 0, DV.maxvv ≥ 165° 

72.1 % 

GUI PL.som 

PL.som > 0 

PL.som=0, DV.maxvv < 180° 

PL.som = 0, DV.maxvv ≥ 180° 

66.6 % 

  SO
2
 measured at JUS significant  70.2 % 

GCM PL.som 

PL.som > 0 

PL.som=0, DV.maxvv < 135° 

PL.som = 0, DV.maxvv ≥ 135° 

55.1 % 

REP PL.som 

PL.som > 0 

PL.som=0, DV.maxvv < 155° 

PL.som = 0, DV.maxvv ≥ 155° 

70.7 % 

  
SO

2
 measured at MAS weakly 

significant 
72.8 % 

HRI DV.maxvv 

PL.som > 0 

PL.som=0, DV.maxvv < 155° 

PL.som = 0, DV.maxvv ≥ 155° 

66.8 % 

  

NO
x
 measured at MAS 

significant especially for the 

estimation of episodes 

71.6 % 

AIL DV.maxvv 

PL.som > 0 

PL.som=0, DV.maxvv < 165° 

PL.som = 0, DV.maxvv ≥ 165° 

37.9 % 

 

One can find in Table 11 a summary of the structure of 

models for each of the six stations. Three weather types 

are considered: denoted by 1 for rainy days, 2 for days  

without rain and wind from the east and 3 for days 

without rain with westerly wind. A cell of the table is 

empty if the corresponding effect is non-significant and 

the variable is not involved in the final model, and it 

contains l or n if the effect is significant and linear (l) or 

non linear (n). 

 

It should be noted that when a pollutant is present, it is 

present for all weather types. In addition, for stations 

GUI, REP and HRI for which the three pollutants are not 

systematically measured, if the data are augmented using 

pollutants measured in nearby stations, these pollutants 

are significant and therefore present in the models. The 

minor changes caused by introduction of new data are 

summarized in the Table 12 and appear in capital letters. 

 

Finally, concerning the general shape of the individual 

effects, except for those which are linearized through 

weather classification, non-linear estimated effects are 

similar to those previously obtained using random forests. 

 

Table 11.  Structure of conditional GAM models across 

stations. 

 JUS GUI GCM REP HRI AIL 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

NO l l n n n l - - - n n n - - - - - - 

NO
2
 l n l n l l - - - l n l - - - - - - 

SO
2
 l n n - - - n n n - - - n n l - - - 

T.max  n n   l n     n n  n n n N 

T.min n   n n   n n n    n   n  

VV.moy     n l  n n  n  l n   n N 

VV.max n l  n   n   n  n   n n   

PA.moy l n  l n l l n l l n  l  l l  N 

GTlehavre   n n    l n n l n n   n   

GTrouen n     l n  l     n n   N 

HR.max       l          n  

HR.moy n n  n  l  n  l      l  N 

HR.min     l      n   l   n  

DV.maxvv n n n   l n l    n    n   

DV.dom          n   n  n n n  

PL.som                   

 

Table 12.  Structure of conditional GAM models across 

stations. Data augmentation for GUI: SO
2
 at JUS, for REP, 

SO
2
 at MAS and for HRI, NO

x
 and SO

2
 at MAS. 

 JUS GUI GCM REP HRI AIL 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

NO l l n L N l - - - n n L N N N - - - 

NO2 l n l L l l - - - l n l N N L - - - 

SO2 l n n N N N n n n L L N L n l - - - 

T.max  n n  N N n     L n  n n n n 

T.min n   n    n n n    n   n  

VV.moy      N  n n  n  l n   n n 

VV.max n l  n L  n   n  n   n n   

PA.moy l n  l n N l n l l n  N L l l  n 

GTlehavre N  n n    l n n l n n N  n   

GTrouen      N n  l      n   n 

HR.max       l          n  

HR.moy n n  n L l  n  l      l  n 

HR.min           n   N   n  

DV.maxvv n n n  N l n l  N  n    n   

DV.dom             n  n n n  

PL.som          N         

 

6.  Mixture of linear models 
 

6.1 Mixture of linear models for JUS 

 

In this section, we build a model consisting of the 

construction of several classes with a linear model for 

each class. The classes (and the linear models) are 
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obtained to better adjust the global model to data. The 

optimal number of classes is also automatically selected 
using a penalized criterion making a tradeoff between 

model fitting and model complexity. The method is based 

on a mixture of linear regression models. The principle is 

given by Gruen and Leisch (2007) and the corresponding 

R implementation in 2004. 
 

The first result is that, whatever the station, the number 

of classes is always two. In addition, the two models can 

then easily be interpreted since the data have been 

standardized before any segmentation. Indeed, the value 

and the sign of the intercept allow to easily qualify the 

classes: positive (or negative) means more (or less) 

polluted than the average station and the absolute value 

gives the intensity. 

 

So, one class can be interpreted as the most polluted one 

and the analysis of the associated model allows to 

characterize these days while the comparison between the 

two models captures the differences between the two 

situations. 

 

For each station, the results are collected in three figures. 

The first one presents the values of each criterion for 

choosing the number of clusters (for JUS, see Figure 16), 

the second one contains a bar-charts representation of 

the two linear models (for JUS, see Figure 17), and the 

last one allows to assess the whole model giving the 

estimated vs. observed diagram (for JUS, see Figure 18). 

For the station JUS, we proceed as follows: 

 

1. First, scale data: 

x = as.data.frame (scale(jus_comp)) 

2. Compute models with k = 1,…,7 clusters: 

res = stepFlexmix(formula(x), data = x, k = 

1:7, nrep = 10, control = list(iter.max = 500)) 

3. Select the best model according to the BIC criterion: 

resBIC = getModel (res , 'BIC ') 

4. Finally, compute the parameter confidence bounds: 

resBICfit = refit ( resBIC ) 

 

6.2 Mixture of linear models across stations 

 

Let us first characterize what we call the most polluted 

class. Table 13 contains the most significant pollutants 

and weather variables in the corresponding model. We 

can first notice that the number of days belonging to this 

class is relatively small (between 57 and 226). For the 

stations where the three pollutants are measured, NO 

appears each time with either NO
2
 (for REP), or SO

2
 (for 

JUS, GUI and HRI). The rain is important for stations of 

Le Havre (REP and HRI) and for GCM while the wind 

directions are important for the stations located in town, 

Rouen (JUS and GUI) and Le Havre (REP and HRI) as 

well as for AIL. 

 

Figure 16. Criteria for the choice of the number of clusters. 

For JUS, the number 2 is selected. 

 

 

Figure 17.  Coefficients for both models, for JUS. 

 

Let us now characterize the differences between the two 

classes focusing on the comparison between the two 

models. The magnitude of the pollutant coefficients 

allows to quantify the importance of each pollutant. 

Thus, we collected in Table 14 these values for each 

station (except of course for the rural station AIL). We 

can note that for Rouen stations (GCM, JUS and GUI), 

the coefficients of SO
2
 are much larger in the most 

polluted class. On the contrary, in Le Havre (REP and 

HRI) the NO
x
 coefficients are the higher. 

 

7.  Local part and regional part 
 

In this section, we focus on a quantification of what we 

call in a broad sense a local part and a regional part of 

PM
10

 pollution, trying to give meaning to these concepts 
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in a purely statistical context without neither direct 

information nor measurements about sources. 

 

The first key point is to start from the distinction 

between the different groups of explanatory variables: the 

pollutants and three groups of meteorological variables. 

The second key idea is the spatial nature of the network 

of six stations and to take advantage of the specificity of 

the rural station AIL for which there is a priori no local 

pollution sources. 

 

Starting from the results of Table 8 (see section 4.3), the 

main idea is to use PM
10

 pollution measured at AIL  

 

 

Figure 18. Observed values vs. predicted values, JUS 

 

Table 13. Characterization of the most polluted class across 

the stations. 

Station 
Number 

of days 

Explained 

Variance 
Pollutants Meteo. Variables 

GCM 226 0.64 SO
2
 (+) PL.som (-) 

JUS 57 0.73 
SO

2
 (+), 

NO(+) 

VV.max (-), 

VV.moy (+), 

DV.dom (-) 

GUI 73 0.66 
SO

2
 (+), 

NO(+) 

GTlehavre (+), 

DV.dom (-) 

AIL 154 0.51  

DV.maxvv (-), 

HR.min (+), 

VV.moy (+), 

GTlehavre (+) 

REP 83 0.75 
NO

2
 (+), 

NO (+) 

GTlehavre (+), 

DV.maxvv (-), 

PA.moy (+), 

PL.som (-) 

HRI 120 0.79 
NO (+), 

SO
2
 (+) 

PL.som (-), 

VV.max (+), 

GTlehavre (+), 

GTrouen (-), 

DV.maxvv (-) 

 

Table 14. Characterization of the difference between the 

two classes across the stations. 

 Polluted class Non-polluted class 

Station NO NO
2
 SO

2
 NO NO

2
 SO

2
 

GCM   0.70   0.18 

JUS 0.31 0.20 0.56 0.35 0.19 0.10 

GUI 0.32 0.26 0.60 0.25 0.21 0.08 

REP 0.36 0.57 0.01 0.34 0.19 0.30 

HRI 0.55 0.13 0.31 0.08 0.03 0.43 

 

(denoted by PM
10

AIL
) as an indicator of the spreading 

pollution at the regional scale. It is supposed to capture 

the pollution phenomenon at greater or lesser extent 

(regional or more) and to not be affected specifically by a 

major local production. This is supported by the 

distributions of concentrations for the six stations: for the 

33 days for which PM
10

AIL
 exceeds 30 µg/m

3
, the median 

is around 40 µg/m
3
 and the first quartile around 33 µg/m

3
. 

 

The importance of the variable PM
10

AIL
 in previous 

models when they are complemented by the introduction 

of this new variable leads to the Table 15. Its importance 

is around 64 to 86, which is considerable, while the 

importance of meteorological variables significantly 

decreases. On the contrary, the importance of pollutants 

remains stable, for all the stations. 

 

These elements are compatible with the idea that PM
10

AIL
 

reflects diffuse pollution in the sense that it does not 

significantly change the importance of local markers 

while it hugely affects weather variables ones. 

 

Fitting a random forest for each of the five other stations, 

considering only pollutants and PM
10

 concentration at 

AIL, discarding all the meteorological variables, then 

leads to Table 16. 

 

In addition, the effects obtained by fitting additive 

models (not reported here) are weakly increasing and 

weakly nonlinear (except sometimes for extreme levels of 

SO
2
) at least for the default window choice (leading to 

slight oversmoothing). So the conclusion is that by 

introducing this new variable and canceling the 

meteorological variables, the model is linearized. 

Concentrating then on models involving locally measured 

pollutants and PM
10

 from AIL, we propose to quantify 

more directly the respective parts of these two factors by 

fitting a simple linear model and computing the 

standardized coefficients (see Table 17). 

 

Then, by summing the coefficients associated with 

pollutants of similar behavior, we obtain the 

quantification given by Table 18.  This leads to the  
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Table 15. RF variable importance across stations, including 

PM
10

AIL

. 

  Meteo  

 Pollutants Negative Positive Mixed PM
10

AIL
 

GCM Rouen 33 (SO
2
) 23 (PL) 17 (GT) 16 (DV) 68 

JUS Rouen 31 (NO) 

18 (SO
2
) 

19 (PL) 16 (GT) 13 (DV) 78 

GUI Rouen 40 (NO
2
) 

17 (SO
2
) 

18 (PL) 26 (PA) 20 (T) 64 

REP Le Havre 44 (NO
2
) 

28 (SO
2
) 

18 (VV) 19 (GT) 12 (T) 81 

HRI Le Havre 41 (SO
2
) 12 (VV) 11 (GT) 13 (T) 86 

 

Table 16. Variable importance when replacing meteo by 

PM
10

AIL

. 

 Pollutant 

now more 

important 

Other pollutants PM
10

AIL
 

GCM Rouen, industrial 73 (SO
2
)  98 

JUS Rouen, urban 35 (NO) 26, 22 (NO
2
, SO

2
) 89 

GUI Rouen, traffic 42 (NO
2
) 31, 20 (NO, SO

2
) 77 

REP Le Havre, traffic 42 (SO
2
) 41, 36 (NO

2
, NO) 78 

HRI Le Havre, urban 50 (SO
2
) 21, 19 (NO, NO

2
) 81 

 

Table 17. Linear regression for local and regional parts: 

standardized coefficients. 

 Adjust-

ted R
2
 

Pollutant 

now more 

important 

Other pollutants PM
10 

AIL
 

GCM Rouen 0.54 0.39 (SO
2
)  0.56 

JUS Rouen 0.68 0.47 (NO) 0.06, 0.11 (NO
2
, SO

2
) 0.55 

GUI Rouen 0.56 0.38 (NO) 0.16, 0.12 (NO
2
, SO

2
) 0.49 

REP Le Havre 0.74 0.32 (SO
2
) 0.28, 0.26 (NO, NO

2
) 0.47 

HRI Le Havre 0.75 0.49 (SO
2
) 0.23, -0.04 (NO, NO

2
) 0.50 

 

Table 18. Local and regional parts: sum of standardized 

coefficients. 

 NO, NO
2
 SO

2
 PM

10 

AIL
 

GCM Rouen 0.39  0.56 

JUS Rouen 0.53 0.11 0.55 

GUI Rouen 0.54 0.12 0.49 

REP Le Havre 0.54 0.32 0.47 

HRI Le Havre 0.19 0.49 0.50 

 

Table 19.  Quantification of local and regional parts. 

 Local part 

(pollutants), % 

Regional part 

% 

GCM Rouen, industrial 41 59 

JUS Rouen, urban 49 51 

GUI Rouen, traffic 52 48 

REP Le Havre, traffic 53 47 

HRI Le Havre, urban 49 51 

breakdown given by Table 19, based on the sum of the 

coefficients of the most important pollutants on the one 

hand and the coefficient of PM
10 

AIL
 on the other hand. 

 

The main conclusion is that the respective parts appear 

to be balanced (around 50%) except for GCM where the 

regional part exceeds the local one (41%-59%). This 

exception must be considered with caution because the 

model does not take into account the loads at grain port 

of Rouen, for which the data are not yet available. 

 

8 Conclusion 
 

We exhibited in this case study a methodology for 

variable selection, non-linear modeling and importance 

variable quantification using three modern 

nonparametric statistical methods (random forests, 

mixtures of linear models and nonlinear additive models) 

to investigate the problem of the statistical analysis of air 

pollution in a French area.  

 

To conclude about the relative merits of the three 

approaches, both to this case study, and perhaps in 

general, the key idea is that these three different tools 

offer different views of the data, focusing on different 

tasks and are to be used simultaneously. Indeed, random 

forests are very powerful for prediction and variable 

importance quantification. However a random forest does 

not define an explicit model since it builds a prediction 

model which is an aggregation of regression trees. So we 

consider regression models by classes of two kinds. The 

first one is based on generalized additive models and 

proposes weather type dependent nonlinear additive 

models, leading to explicit and easy to understand classes. 

The second one is based on mixture of linear models and 

also builds clusterwise regression models but the building 

strategy combines more closely clustering and regression 

fitting allowing more flexible classification as well as 

simpler models within a class but of course yielding less 

directly interpretable classes.  

 

From the PM
10

 modeling viewpoint, the results allow us 

to analyze PM
10

 concentrations and confirm the 

environmental knowledge of the phenomenon of air 

pollution by fine particles. Of course, this kind of 

methodology can be useful when applied to any dataset 

and any problem involving nonlinear data analysis and 

modeling in the context of environmental data. In 

addition, the last section focusing on an attempt of 

quantification of a local part and a regional part of PM
10

 

pollution illustrates how different approaches are merged 

to construct such a tricky evaluation.  
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Let us finally mention that, in addition to some simple 

examples included in the paper, the appendix and related 

online material provide full R code as well as the 

complete data set. 
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Appendix: Associated Data and R Code 

 

A.1 Data 

 

The data used in this paper are available in the associated 

archive, containing 14 files. These data are in two 

formats: 

 Specific R format, in the JolloisPoggiPortier.Rdata, 

readable with the following command: 

load('JolloisPoggiPortier.Rdata') 

 Semicolon-separated text format, in the 

JolloisPoggiPortier_XXX.txt and 

JolloisPoggiPortier_XXX_comp.txt files. The XXX 

represents the desired station (AIL, GCM, HRI, REP, 

JUS, GUI). The second file, ended by _comp.txt, 

contains data without missing values. 

Table 20 describes the 18 variables. For GCM station, 

only the pollutant SO
2
 is available, and there is no 

pollutant for AIL station. 

 

Table 20. Data dictionary. For wind direction, 0° 

corresponds to north. 

Name Description Units 

PM10 Concentration of PM
10

 µg/m
3
 

NO, NO2, SO2 Concentration of NO, NO
2
, SO

2
 µg/m

3
 

T.min, T.max,  

   T.moy 

Minimum, maximum and mean 

temperature 
°C 

DV.maxvv,  

   DV.dom 

Maximum speed and dominant wind 

direction 
° 

VV.max, VV.moy Maximum and mean wind speed  m/s 

PL.som Daily rainfall Mm 

HR.min, HR.max, 

   HR.moy 

Minimum, maximum and mean 

relative humidity 
% 

PA.moy Mean air pressure hPa 

GTrouen, GTlehavre Temperature gradient °C 

 

A.2 R code 

 

Three R scripts are associated with this paper, one for 

each of the three considered methods: 

ModNL_GAM.R Non-linear additive models 

VarImp_Effect_RF.R Random forest 

ClusReg_CR.R Mixture of linear regressions 

They allow  one to apply the methods for each station, 

and save the results in a specific directory for each 

method and for each station. 

 

 

Caution: when a GAM model is fitted on a weather defined 

class of small size, an error may occur when a numerical 

variable is confused with a factor. So, to still use the 

automatic version in such situations, it is necessary to delete 

the corresponding variable (to be search among VV.max, 

HR.max, DV.maxvv or DV.dom). 
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