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In this paper, Procrustes Analyses are introduced with their various facets and set in an economics framework with an 

application to stock markets. The time series of the daily indexes of eight major world stock markets are considered for a 

four-year period (1988-91) and five two-year mobile windows are built to find a common graphical representation in 

which the evolution of the relations among the stock markets can be appreciated. Both Procrustes and Generalized 

Procrustes Analyses are applied in order to illuminate this evolution. 

 
 

Introduction 

 
In ancient Greek mythology, the bandit Procrustes (“the 

Stretcher”) was a son of Poseidon with a stronghold on 

Mount Korydallos, situated on the sacred way between 

Athens and Eleusis. There, he had an iron bed in which 

he invited every passer-by to spend the night. According 

to the guest's size with respect to the bed, he would either 

stretch him with his smith’s hammer to fit the bed, or 

amputate the excess length. Indeed, nobody ever fit the 

bed exactly because Procrustes would take advantage of 

two beds which differed in size. Procrustes continued his 

reign of terror until Theseus, travelling to Athens along 

the sacred way, “fitted” him to his own bed (Plutarch). 

 

In data analysis, the Procrustes Analysis (PA) is a method 

that provides the best adjustment of a set of points, called 

test cloud, to a given set, called target cloud, according to 

transformations that do not change, up to a scale factor, 

the reciprocal distances among the points of the test 

cloud. Originally proposed by Mosier (1939), its name is 

due to Hurley and Cattel (1962), and it later underwent 

further developments, in particular the Generalized 

Procrustes Analysis (GPA, Gower, 1975), in which a best  

 

 

adjustment is searched among several sets of points. The 

method is largely used both in pattern recognition and in 

the so-called shape analysis (Dryden and Mardia, 1998) as 

a first adjustment of more complex transformations, but it 

may be applied to all situations in which direct 

comparisons among configurations of the same objects 

under different representations are requested. 

 

The exploratory analysis of time-series through classical 

methods may be performed by considering the 

observations as units and the occasions of observation as 

variables: its drawback is the very large number of 

variables in respect of the usually smaller number of units. 

Bry (1995) proposes to transpose the data table, so that 

the series represent the variables and the occasions the 

units. In this way, classical scaling methods, such as 

Principal Component Analysis (PCA, Bry, 1995) and its 

variations, may be adopted. This allows to investigate the 

overall relations among time-series, based on their 

correlation matrix, and to detect the influence of the 

occasions as displayed by their position on the PCA 

principal axes and planes. If some further information is 
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searched, in particular to identify specific time-periods 

during which the pattern of correlations may be different 

from the overall one, mobile windows on which to apply 

the same analyses may be adopted. Camiz et al. (2010) 

applied this method to a set of yearly time-series of tree-

ring width of Notofagus trees of Tierra del Fuego 

(Argentina), resulting in a time-series of PCA, whose 

synthesis seemed difficult. The application of Procustes 

Analysis to this case arose as a possible solution. 

 
In this paper, we aim at describing both PA and GPA 

principles and we show their application to time-series 

through an example: the evolution of eight international 

stock-exchange markets, as represented by five tables of 

daily observations for two years. For this task a pre-

treatment is needed, in order to get a set of points in the 

space corresponding to the series; for our purposes, we 

shall use first a Non-Metric Multidimensional Scaling 

(NMMDS, Borg and Groenen, 2005), based on a distance 

matrix derived from the correlation between series, to 

obtain a graphical display representing the relations 

between time-series. This will provide us with the clouds 

of points on which PA may be applied. 

 

The Procrustes Transformation 

 
The aim of a Procrustes Analysis (PA) is to best adjust two 

clouds of points in a geometrical space, that is to adjust a 

test cloud to a target cloud as best as possible through a 

rigid transformation. As rigid transformations we consider 

only translations, rotations, and rescaling, or a 

composition of these. 

 

Let there be in
 pR  two clouds of points, the target cloud 

xN  of n points ix   and the test cloud zN  of n points iz  

indexed by the same set I (with )(Icardn  ), and given 

the same weights ip  assumed to be strictly positive and 

to sum up to 1. In addition, we assume that 
pR  is given a 

metric represented by a positive definite matrix M. This is 

the most general framework: normally, all points have the 

same weight and the metric M is given by the identity 

matrix I. 

 

The PA consists in finding the so-called Procrustes 

Transformation (PT) P(a,T,s), composed of a translation 

a , 
pRa , a rotation T, 

ppRT  , and a rescaling s, 

Rs , such that the images of the points of the test 

cloud zN  under P, that is azTszPu iii  ..)( , Ii  

are as close as possible to the points of the target cloud 

xN  in the least-squares sense. The objective function to 

minimize is thus: 



Ii

Miii uxpPA
2

. , with the norm 

M
 depending on the metric M, a symmetric definite 

positive matrix. 

 

Search for the translation a 

 

If we introduce both clouds centroids 



n

i

ii xpG
1

.  and 





n

i

ii zpH
1

. , it is easy to see that the transformation of 

H, aHTsHPU  ..)(  minimizes PA when UG  , 

which implies: HTsGa .. . Indeed, from the objective 

function it follows that: 
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where the only member depending on a is 
2

UG  , 

hence its minimum for  UG 
. 

 

Search for the rescaling s 

 

If we replace the found translation a into the objective 

function, this becomes 
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whose minimum is reached when its derivative is zero, 

that is 
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hence 
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Since any rotation is a norm-preserving isometry, T does 

not influence the denominator and may be removed, 

giving 
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Search for the rotation T 

 
Once the found rescaling s is plugged into the objective 

function, it becomes 

 
2 2

2

1

2

1

2

1

2

1

. .

. , .( )

.

. , .( )

2. ,

.

i i i i i

i I i I

n

i i i

i

n

i i

i

n

i i i

i

n

i i

i

p x u p x G

p x G T z H

p z H

p x G T z H

p z H

 









   

 
  

 



 
  

 




 








 

 
simplifying to 
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If we center both vectors ix  and iz  to their respective 

centroids, say Gxx ii ~
 and Hzz ii ~

, the search 

for the rotation T is reduced to the maximization of  

 




n

i

iii zTxp
1
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Let us now define two matrices  



n

i

i
t

ii zxpV
1

~.~.  and 

MVMVW t ... , with M the metrics in 
pR : clearly MW 

is symmetrical (so that W will be called M-symmetrical). 

Thus, W admits an M-orthonormal basis of eigenvectors, 

denoted  peee ,...,, 21  that we assume sorted in 

decreasing order of their corresponding eigenvalues 

p  ....21  (Golub and van Loan, 1996). If the 

first r  eigenvalues are different from zero, we can define 

M-orthonormal vectors 
p

t

R
eMV

f 








..
, r,..,1 , 

that may be completed to an M-orthonormal basis 

 pfff ,...,, 21  of 
pR .Indeed, 
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Bourgois (1978) showed that a possible T that gives the 

searched optimum is defined by  efT . ,  r,1 . 

 

Remark 1 

 

Let X and Z be two tables with dimensions  pn,  whose 

rows correspond to the two clouds xN  and zN  

respectively. When the metric M of 
pR  is the classical 

Euclidean one and the weights  Iipi /  are all equal, 

then the three steps of the transformation, say the search 

for the rotation T, the translation a, and the rescaling s 

may be described as (see Borg and Groenen, 2005): 

 

1) Centering the tables X
~

 and Z
~

, 

2) Compute the tables product
1
 ZXC t ~

.
~

 , 

3) Compute the Singular Value Decomposition of 

QPC t.. , 

 

with the following results: 

 

 the rotation QPT t.  

 the rescaling  

)
~

.
~

(

).
~

.
~

(

ZZtrace

TZXtrace
s

t

tt
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 the translation n
tt TYsX

n
a 1)...(.

1
 , 

 

with n1  a vector with all components equal to 1. 

 

Remark 2 

 

The objective function 

2
.




Ii

iii uxpPA , with 

azTsu ii  ..  may be reformulated as 

 

     




  aTZsXaTZsXTrace t

n
tt

n
tt

.1....1..  

                                                           
1
 In this paper, we shall denote by Xt

 the transpose of matrix X. 
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This formulation allows one to generalize this criterion, as 

will be discussed below. 

 

Analysis of synchronous time-series evolution 

 

Let us consider a set of p synchronous time-series 

observed along n occasions: they may be gathered in an 

pn  data table S and their overall relations may be 

described by their correlation matrix R. If we want to 

study the evolution of the system, we may want to 

consider their correlation in different time-intervals and 

compare them. This may be done by defining a mobile 

window, a sub-table of X of fixed length w, and by shifting 

it along the original table. In this way, we would obtain a 

set of indexed pw  tables kS  whose structures, 

represented by the corresponding correlation matrices 

kR , may be compared. To perform this comparison, we 

can build Euclidean representations of each table and 

compare them, if possible with a simultaneous 

representation. 

 

Indeed, given any dissimilarity , that is a symmetric non 

negative real function of a couple of points with 0ii , 

such a Euclidean representation may be obtained through 

NMMDS (Non-Metric Multi-Dimensional Scaling, Borg 

and Groenen, 2005) techniques. In the given case, we 

can define as dissimilarity ijij r1 , the correlation 

between two series: ij  ranges from 0, in the case of r = 

1, that is total positive correlation, to 2 when r = -1, 

corresponding to total negative correlation. 

 

The goal of NMMDS is, given a set of p points with any 

dissimilarity (pp) matrix  ij , nji ,...,1,   between 

them, to build a matrix X (pq) composed by the 

coordinates of the p points in a q-dimensional Euclidean 

space (q < p), so that the so-called stress function is 

minimized, namely: 

 

    
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in which  Xd ij  is the Euclidean distance between 

points, computed from the coordinates in X. 

 

The minimum stress may not be found algebraically but 

through the use of some specific numerical algorithm, as 

for example the SMACOF (Scaling by MAjorizing a 

COmplicated Function, De Leeuw, 1988). It must be 

pointed out that, unlike in metric scaling (such as PCA), 

the Euclidean representation resulting from NMMDS is 

not unique, since any isometry does not modify the stress. 

To choose a suitable dimension q of representation, the 

so-called elbow criterion may be used: it is the rule of 

thumb that consists in examining the scatter plot of the 

stresses as a function of q and choosing as suitable the 

dimension in which an elbow occurs (Thorndike, 1953). 
 

Thus, if kX  and 1kX  are two representations associated 

to two time periods, a Procrustes Transformation will be 

searched in order to get kX  and aTXs k  .. 1  to be as 

close as possible. Indeed, in this case we would not 

consider both a rescaling s that would modify the metrics 

of one table, and a translation a, since both kX   and 

1kX  are column centered. Thus, the searched 

transformation will be the transformation T minimizing 

2

1.TXX kk  . 

 
Application to stock exchange markets 

 
We propose here an application, analogous to that of 

Groenen and Franses (2000), concerning 3347 daily 

overall indices of 8 great stock exchanges during a period 

ranging from January 2
nd

 1986 to October 29
th

 1998. The 

data were taken from Franses and van Dyck (2000) and 

downloaded from http: //robjhyndman.com 

/tsdldata/data/FVD1.dat. All computations were 

performed through the SAS statistical software. 

 

We consider here two periods of two years 1988-1989 

and 1990-1991. For each of these two periods, an 8 by 8 

correlation matrix         2,1,8,1,8,1,  kjirR ijk  

between indices is computed based on the daily values. 

Our goal is to represent the stock exchanges as points in 

the Euclidean multidimensional space based on the 

correlation matrix, so that the closeness of two points 

represents a high positive correlation between 

corresponding stock exchanges. 

 

In our case n = 8 and the elbow criterion suggests q=2 

for both cases, so that the representations will be 2-

dimensional, in other words a plane. In Figures 1 and 2, 

the plane representations obtained through the NMMDS 

applied to the two chosen periods are shown. 

 

Comparing the two graphics, the isolation of Hong-Kong 

is evident in 1988-89, whereas in 1990-91 both New York 

and London approach Hong-Kong in contrast with the 

other stock markets. In Figure 3, the two graphics are 

superimposed, according to a Procrustes Transformation, 

namely an isometry: with this representation even the 

intensity of the variation of each stock market may be  
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Figure 1. Representation of the 8 stock market correlations 

in 1988-1989. 

 

 

Figure 2. Representation of the 8 stock market correlations 

in 1990-1991. 

 

 
Figure 3. Procrustes simultaneous representation of the 8 

stock markets. 

 

appreciated, paying attention to the directions of the 

arrows in the figure. 

 

Looking at Figure 3, we may now say that not only did 

New York and London approach Hong-Kong in the second 

window, but also that Hong-Kong approached these stock 

markets, whereas Tokyo moved further, as did Paris and 

Frankfurt. Morevoer, a convergence of Amsterdam with 

Singapore may be appreciated. 

 

 

Figure 4. Representation of the evolution of the 8 stock 

markets by successive Procrustes transformations. 

 

Now, in order to fine-tune the evolution of the 

correlations among the stock exchanges during these 

years, we build a series of mobile windows each two-years 

long, with a shift of 6 months between two adjacent 

windows: thus, three intermediate patterns result and we 

want to represent the resulting five NMMDS graphics 

simultaneously. For this task, a PT is applied between two 

successive representations, to adjust each representation 

on the preceding one. 

 

In Figure 4 the evolution of the correlations between 

stock markets during the period 1988-1991 obtained in 

this way is shown. 

 

Looking at the graphics, the regular evolution of Hong-

Kong, London, New York, and Paris may be appreciated, 

whereas the pattern for the other markets is much more 

complicated. 

 

Indeed, this last application involving five tables, may be 

alternatively dealt with directly, by searching for a 

transformation that simultaneously best adjusts each of K 

configurations to all others: this will be shown in the 

following section. 

 
The Generalized Procrustes Analysis 
 

The idea of Generalized Procrustes Analysis (GPA, Gower, 

1975) is to simultaneously best adjust a set of K clouds of 

points in a geometrical space through a rigid 

transformation, again composed only by translations, 

rotations, and rescaling. Indeed, this is an alternative to 

the successive PTs applied to the last example of Section 

4, with the advantage that in this case a compromise  can 

be built, that is a graphical representation of only one 

cloud that approaches at the best all the given ones. 
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Given K data tables KXXX ,...,, 21 , all with dimensions 

),( pn , the GPA aims at minimizing the following 

criterion, that generalizes the notation of remark 2: 

 

  









 

K

k

lklk

t
K

lk
l

XXXXtraceGPA
1 1

~~~~
 

where k
t

nkkkk aTXsX .1..
~

 ,  Kk ,1 . 

 

This criterion may be minimized only iteratively, because 

no analytical solution is known to date. In the sequel, 

three methods of minimization of GPA are described. 

 

First method 

 

The first method, proposed by Kristof and Wingersky 

(1971), results in a series of adjustments of one 

configuration, considering all others fixed; thus, 

iteratively, an adjusted 1

~
X  assuming the others fixed is 

searched for, then an adjusted 2

~
X  assuming the others 

fixed is searched for, and so on. 

 

More precisely, for every configuration Kk , the GPA 

criterion may be written as: 

 

  CXXtraceXXtraceKGPA
kl

lk
t

kk
t  



)
~

.
~

(.2)
~

.
~

(.1  

where C  represents the terms of GPA that do not 

depend on kX
~

. 

 

By setting 





kl

lX
K

Y
~

.
)1(

1
, it follows that: 

 

 1 . ( . ) 2. ( . ) ,t t

k k kGPA K trace X X trace X Y C     
 

 

and therefore  that 

 

     1 .

( 1) ( . ) .

t

k k

t

GPA K trace X Y X Y

C K trace Y Y

    
  

    
 

 

This corresponds to minimizing 

  




  YXYXtrace kk

t ~
.

~
, that is to apply the 

Procrustes transformation of the test configuration kX  

on the target Y , as previously described. The 

convergence is reached with few iterations, since the 

GPA criterion is positive and decreases at every step. 

 

 

Second method 

 

The second method for minimizing the GPA criterion 

was proposed by Gower (1975) and improved by Ten 

Berge (1977). 

 

As a first step, the K translations ka  are found: it may 

be shown that the GPA criterion is minimized if all 

resulting configurations have the same centroid: 

 ,,1 Kk  01.
~

nk
t X . This is obtained by simply 

centering the original tables kX  to their respective 

centroid. 

 

Both rotations kT  and rescalings ks  are then found 

iteratively in two phases, once we set initially: 1ks , 

 Kk ,1  and kk XX 
~

: 

 

1) In the same way as in the first method, a rotation kT  

is searched to adjust kX
~

 on 





kl

lX
K

Y
~

.
)1(

1
 

iteratively for every k until convergence. The 

obtained configurations are again denoted by kX
~

, 

 Kk ,1 . 

 

2) The KK   matrix B is now considered, whose 

elements are  lk
t

kl XXtraceb
~

.
~

  and we denote by 

   Kkk ,1
   the eigenvector of B associated to its 

largest eigenvalue.  It may be shown that the 

rescaling that minimizes the GPA criterion is 

k
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l
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k
XXtrace
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~
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~
(

)
~

.
~

(
1


 , see Ten Berge (1977). 

 

Again, we denote by kX
~

,  Kk ,1  the rescaled 

configurations. 

 

Phases 1) and 2) are then repeated until convergence. 

 

Third method 

 

A third way to minimize the GPA criterion (see Borg and 

Groenen, 2000) is based on the average configuration 


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1
. Indeed, the criterion may be written as 
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The procedure minimizes the GPA criterion according to 

the following steps: 

 

1) The configurations kX
~

 are found by a PA of the k 

test configurations on the average configuration Z 

assumed fixed. 

 

2) The average configuration 



K

k

kX
K

Z
1

~
.

1
 is re-

calculated. 

 

Steps 1) and 2) are iterated until convergence. Albeit 

very simple, this method is the most time-consuming, so 

that its use is not recommended. 

 

It is worth observing that, in all methods, the average 

configuration 



K

k

kX
K

Z
1

~
.

1
 results in a compromise 

among all configurations, that summarizes the K clouds in 

a single one. 

 
Application of GPA to stock exchange markets 
 

The application of GPA to the eight stock exchange 

markets results in two graphics: a compromise (Figure 5) 

and a representation of the evolution along time (Figure 

6). All computations were performed with the 

NewMDSX package. 

 

In Figure 5 the compromise representation of the eight 

stock markets with respect to the five different periods is 

given as a centroid cloud. It is clear that Hong-Kong is 

different from the other markets through all the windows, 

and that some difference concerns both Tokyo and 

Amsterdam. 

 

In Figure 6 the evolution of the stock markets is shown, 

as resulting by the application of GPA. The pattern is 

somehow different from the one shown in Figure 4. This 

clearly is due to the different criterion used in the 

analysis, since the previous one adjusted every table to its 

predecessor and the latter did it to the common centroid. 

Nevertheless, the main evolution is the same in both 

representations: the convergence of Hong-Kong, New 

York, and London, the divergence of both Tokyo and 

Frankfurt with respect to these, but eventually evolving in 

the same direction. 

 

Conclusion 
 

In this paper we introduced both PA and GPA in their 

classical formulation and suggested a possible application 

to stock market time series. However, other techniques  

 

Figure 5. GPA of the eight stock exchange markets. 

Compromise representation given by the centroid. 

 

 

Figure 6. Representation of the evolution of the 8 stock 

markets by the Generalized Procrustes Analysis. 
 

for the same purpose may be taken into account, based 

on different rationale and a comparison of the results may 

be advisable: we can quote here 3-way methods, both 

metric, such as Dual Statis (Lavit, 1988) and Dual 

Multiple Factor Analysis (Lê et al., 2008), and non-metric, 

such as INDSCAL (Carroll and Chang, 1970). 

 

Generalizations of Procrustes Analysis are discussed in 

Borg and Groenen (2005) and implemented in both 

PINDIS (Lingoes and Borg, 1978) and NewMDSX. 

Further developments may also be considered, in 

particular when special conditions occur. When the series 

need to be considered with different weights, depending 

on either the market's importance or on the different 

range of variation of the markets in the different 

occasions or on their correlation, the least-squares 

approach is not adequate since it gives the same 

importance to all involved markets. Thus, a more general 

model may be considered, such as Maximum Likelihood 

(Theobald and Wuttke, 2006). When the samples are 

different from an occasion to another, new adaptive 

methods may be considered. With these methods, 
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stochastic links are created, as proposed by both 

Bouveyron and Jacques (2010) and Bienacki and Lourme 

(2010), may be applied. The stochastic links may be seen 

as a generalization of the geometric transformations used 

in Procrustes Analysis, with the further possibility of 

classification or prediction otherwise impossible. 
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