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Abstract: For the last three decades, the advent of technologies for massive data collection have brought deep
changes in many scientific fields. What was first seen as a blessing, rapidly turned out to be termed as the curse
of dimensionality. Reducing the dimensionality has therefore become a challenge in statistical learning. In high
dimensional linear regression models, the quest for parsimony has long been driven by the idea that a few relevant
variables may be sufficient to describe the modeled phenomenon. Recently, a new paradigm was introduced in a series of
articles from which the present work derives. We propose here a model that simultaneously performs variable clustering
and regression. Our approach no longer considers the regression coefficients as fixed parameters to be estimated,
but as unobserved random variables following a Gaussian mixture model. The latent partition is then determined by
maximum likelihood and predictions are obtained from the conditional distribution of the regression coefficients given
the data. The number of latent components is chosen using a BIC criterion. Our model has very competitive predictive
performances compared to standard approaches and brings significant improvements in interpretability.

Résumé : Les trois dernières décennies ont vu l’avènement de profonds changements dans de nombreuses disciplines
scientifiques. Certains de ces changements, directement liés à la collecte massive de données, ont donné naissance à
de nombreux défis en apprentissage statistique. La réduction de la dimension en est un. En régression linéaire, l’idée
de parcimonie a longtemps été associée à la possibilité de modéliser un phénomène grâce à un faible nombre de
variables. Un nouveau paradigme a récemment été introduit dans lequel s’inscrivent pleinement les présents travaux.
Nous présentons ici un modèle permettant simultanément d’estimer un modèle de régression tout en effectuant une
classification des covariables. Ce modèle ne considère pas les coefficients de régression comme des paramètres à
estimer mais plutôt comme des variables aléatoires non observées suivant une distribution de mélange gaussien. La
partition latente des variables est estimée par maximum de vraisemblance. Le nombre de groupes de variables est
choisi en minimisant le critère BIC. Notre modèle possède une très bonne qualité de prédiction et son interprétation est
aiseée grâce à l’introduction de groupe de variables.
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Clusterwise regression 39

1. Introduction

We consider the standard linear regression model defined as

yi = β0 +
p

∑
j=1

β jxi j + εi, i = 1, . . . ,n. (1)

For an individual i, yi is the observed response, xi j is an observed value for the j-th covariate
and εi is an error term often assumed to be normally distributed. The εi’s are also assumed to be
independent and identically distributed. β j is the regression coefficient associated with the j-th
covariate. We denote βββ = (β1, . . . ,βp) as the vector of regression coefficients.

The dimension p of model (1) is tightly related to both its interpretability and ability to yield
reliable predictions. It is well known that the more covariates we add to the model the harder
becomes its interpretation. Besides, Stein established in Stein (1981) that the mean prediction
squared error attributable to a linear regression model increases with its dimension. Reducing the
model dimension therefore pursues the goal of minimizing prediction error while keeping the
model interpretable. This problem, also referred to as the bias-variance trade-off (Hastie et al.,
2001), becomes increasingly challenging as the set of covariates exceeds the sample size. This
high dimensional framework has fueled a number of researches during the last three decades.

Variable selection is one of the most popular approaches for reducing dimensionality. Although
it has a direct impact on p, traditional stepwise algorithms for finding the best subset of predictors
had a mitigated success because of their heavy computational burden (Hastie et al., 2001). At
a more affordable computational cost, penalized approaches were introduced as an efficient
alternative for variable selection. Penalized approaches impose a constraint on βββ that generally
depends on a tuning parameter. This parameter can be selected over a grid of values either
minimizing the out-of-sample prediction error (cross validation) or using information based
criteria like AIC or BIC (Zou et al., 2007; Schwarz, 1978). Among the most emblematic methods
belonging to this second family of approaches we can refer to the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1994) and the elastic net (Zou and Hastie, 2005).

Another relevant approach for reducing dimensionality consists of identifying patterns under
which covariates can be pooled together. This idea was recently implemented in a gene expression
study (Park et al., 2007). In that study, groups of genes were built from hierarchical clustering of
gene expression levels. The authors created surrogate covariates by averaging gene expression
levels within each group. Those new predictors were afterwards included in a linear regression
model, replacing the primary variables. The major limitation in this approach is the independence
between the prediction and clustering parts. Consequently, effects of the surrogate covariates
can be diluted if they contain primary variables with either no effect or even opposite effects
on the response. To sidestep the previous limitation, Bondell and Reich (2008) introduced in
2008 the octogonal shrinkage and clustering algorithm for regression (OSCAR). The OSCAR
methodology belongs to the family of penalized approaches. It imposes a constraint on βββ that
is a weighted combination of the L1 norm and the pairwise L∞ norm. Upper-bounding the
pairwise L∞ norm enforces the covariates to have close coefficients. When the constraint is strong
enough, closeness translates into equality achieving thus a grouping property. More recently, a
generalization to the OSCAR methodology was proposed in Sharma et al. (2013). One major
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40 L. Yengo, J. Jacques and C. Biernacki

advantage of this new approach, namely the pairwise absolute clustering and sparsity (PACS)
was the reduced computational cost. In the aftermath of OSCAR and PACS, other methodologies
aiming at simultaneously performing parameter estimation and clustering were proposed. We
can for instance refer to the approaches of Petry and Tutz (2009) and She and University (2008)
which also mixed L1 and pairwise L∞ penalties or those of Daye and Jeng (2009) and Shen and
Huang (2010) based on alternative penalties.

In line with the latter works, we introduce the clusterwise effect regression (CLERE), a
new methodology aiming at simultaneously performing regression and clustering of covariates.
CLERE considers each β j no longer as a fixed parameter but as an unobserved random variable
(Assumption A1) following a mixture of Gaussian distributions (Assumption A2) with an arbitrary
number of components (Assumption A3). The means of each component in the mixture are
moreover assumed unequal (Assumption A4). Under assumptions A1 and A2 our approach shows
strong similarities with a Bayesian approach for variable selection known as the spike and
slab model (Mitchell and Beauchamp, 1988; Ishwaran and J., 2005). Despite those similarities,
assumptions A3 and A4 drive the main differences between the two methods. Indeed, in spike and
slab models the number of components is restricted to two and the means of each component of
the mixture are assumed equal to zero. In addition to those two differences, we recall an important
issue which is that our primary goal is not variable selection like for spike and slab models but
variable clustering. The clustering of the covariates is achieved using the probability of each β j to
be drawn from the same component of the mixture, given the data and the estimated parameters.

The present paper is organized as follows. Section 2 presents our model. In Section 3, a max-
imum likelihood strategy is presented to estimate the model parameters as well as a criterion
to select the number of latent groups. Section 4 presents numerical experiments both on simu-
lated and real data. In this section the predictive performances of our model are compared to
standard approaches for dimension reduction in high dimensional linear regression models. The
perspectives of this research are discussed in Section 5.

2. Model definition and notation

2.1. Model definition

As aforementioned, the number of predictors may be very large with respect to the number
of samples. It is therefore impossible to uniquely estimate each coefficient β j. However, we
may assume the existence of g latent groups of covariates within which the β j’s are sufficiently
close to one another that all of them may be summarized by their average. Among possible
mathematical translations of the latter assumption, we propose to consider the β j’s no longer as
fixed effect parameters but as unobserved independent random variables following a Gaussian
mixture distribution:

β j ∼
g

∑
k=1

πkN
(
bk,γ

2). (2)

In other words, we assume for each β j the existence of a multinomial distributed random variable,
z = (z j1, . . . ,z jg) of parameter πππ = (π1, . . . ,πg)

′, such as β j is drawn from the k-th component of
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Clusterwise regression 41

the mixture when z jk = 1. Our model can then be written as
yi = β0 +∑

p
j=1 β jxi j + εi

εi ∼N (0,σ2)
β j|z j ∼N

(
∑

g
k=1 bkz jk,γ

2
)

z j = (z j1, . . . ,z jg)∼M (π1, . . . ,πg) .

(3)

Parameter β0 is associated with a constant variable. Since our primary aim is variable clustering,
we did not considered β0 as random in model (3).

2.2. Notation

In all subsequent sections of the paper the following notation hold: y = (y1, . . . ,yn)
′, βββ =

(β1, . . . ,βp)
′, X = (xi j), Z = (z jk), b = (b1 . . .bg)

′ and πππ = (π1, . . . ,πg)
′.Moreover, log p(y|X;θθθ)

denotes the log-likelihood of model (3) assessed for the parameter θθθ =
(
β0,bbb,πππ,σ2,γ2

)
and Z

the set of p×g-matrices defined as

(
z jk
)

1≤ j≤p,1≤k≤g ∈Z =⇒ ∀ j ∈ {1, . . . , p},

{
∃!k such as z jk = 1
if k′ 6= k then z jk = 0.

2.3. Bayes or Empirical Bayes?

With such a hierarchical definition, model (3) can be interpretated as a Bayesian approach.
However, to be fully Bayesian a prior distribution for θθθ =

(
β0,bbb,πππ,σ2,γ2

)
would have been

necessary. Instead, we propose to estimate θθθ by maximizing the (marginal) log-likelihood,
log p(y|X;θθθ). This partially Bayesian approach is referred to as Empirical Bayes (EB) (Casella,
1985). Our choice for an EB approach was motivated by the number of parameters we have to
estimate. This number, 2(g+1), is often small with respect to the sample size n. In this situation,
posterior distributions obtained with an EB approach and with a fully Bayesian approach are
expected to be close (Petrone et al., 2012).

2.4. Degeneracy of the likelihood

To prevent degeneracy of the likelihood, which often occurs in mixture models (Biernacki, 2007),
constraints are generally imposed to the space of hidden variables (Policello, 1981). In this work
the following constraint is proposed:

∀k = 1, . . . ,g
p

∑
j=1

z jk ≥ 1. (4)

This constraint basically requires none of the groups to be empty.
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42 L. Yengo, J. Jacques and C. Biernacki

3. Estimation, prediction, clustering and model selection

3.1. Maximum Likelihood Estimation

The log-likelihood log p(y|X;θθθ) is defined as

log p(y|X;θθθ) = log

[
∑

Z∈Z

∫
Rp

p(y,βββ ,Z|X;θθθ)dβββ

]
. (5)

The likelihood cannot be calculated analytically as it involves integration over unobserved data
(βββ ,Z). A direct maximization for estimating θθθ is consequently impossible.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) has been introduced
to perform MLE in the presence of unobserved data. The EM algorithm is an iterative method,
which starts with initial estimates of the parameters and updates these estimates at each iteration
until convergence is achieved. We propose in the following subsections its implementation in the
special case of model (3).

3.1.1. Initialization

The algorithm is initialized using primary estimates β j
(0) of each β j. The latter can be either

obtained from univariate regression coefficients or from penalized approaches like the LASSO
or the ridge regression. Model (2) is then fitted using β (0) =

(
β
(0)
1 , . . . ,β

(0)
p

)
as observed data

to produce starting values b(0), πππ(0) and γ2(0) respectively for parameters b, πππ and γ2. An initial
partition Z(0) =

(
z(0)jk

)
∈Z is determined as

∀ j ∈ {1, . . . , p}, z(0)jk =

1 if k = argmink′∈{1,...,g}

(
β j

(0)−b(0)k′

)2

0 otherwise.

β0 and σ2 are initialized using β (0) as following:

β
(0)
0 =

1
n

n

∑
i=1

(
yi−

p

∑
j=1

β
(0)
j xi j

)
and σ

2(0) =
1
n

n

∑
i=1

(
yi−β

(0)
0 −

p

∑
j=1

β
(0)
j xi j

)2

.

The EM algorithm only ensures to converge towards a local maximum of the likelihood. Our
approach is therefore potentially subjected to this limitation. Nevertheless, the stochasticity
introduced during the E-step (see Section 3.1.2) tends to lessen the impact of the starting point.
This has already been studied in a general context (Celeux et al., 1996). Indeed, we illustrate
further in Section 4.1.2 that the choice of the starting point is not critical to our method.
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3.1.2. (Stochastic) Expectation step

At iteration d of the algorithm, the log-likelihood of the complete data log p(y,βββ ,Z|X;θθθ
(d)) has

the following expression:

log p(y,βββ ,Z|X;θθθ
(d)) = log p(y|βββ ,X;β

(d)
0 ,σ2(d))+ log p(βββ ,Z|X;b(d),π(d),γ2(d))

= −n
2

log
(

2πσ
2(d)
)
− 1

2σ2(d)

n

∑
i=1

(
yi−β

(d)
0 −

p

∑
j=1

β jxi j

)2

− p
2

log
(

2πγ
2(d)
)
+

p

∑
j=1

g

∑
k=1

z jk

logπ
(d)
k −

(
β j−b(d)k

)2

2γ2(d)

.

In classical EM algorithm, the E-step requires, at each iteration, the calculation of the expectation
of the log-likelihood of the full data log p

(
y,βββ ,Z|X;θθθ

(d)
)

, with respect to the conditional distri-

bution of unobserved data given observed data. This quantity generally denoted as Q
(

θθθ |θθθ (d)
)

,

does not have a closed form in model (3). We therefore approximate Q
(

θθθ |θθθ (d)
)

using Monte
Carlo simulations. This stochastic version of the EM algorithm was introduced in Wei and Tanner
(1990) under the name of Monte Carlo EM (MCEM) algorithm. A Gibbs sampling scheme is
proposed to generate draws from the probability distribution p

(
βββ ,Z|y,X;θθθ

(d)
)

. In model (3),

Gibbs sampling requires the definition of the conditional distributions p
(

βββ |Z,y,X;θθθ
(d)
)

and

p
(

Z|βββ ,y,X;θθθ
(d)
)

. The latter distributions are given in Equations (6) and (7). Details about how
those distributions were derived are given in Section 6.

βββ |Z,y;θθθ
(d) ∼N

(
µµµ(d),ΣΣΣ(d)

)
µµµ(d) =

[
X′X+ σ2(d)

γ2(d)
Ip

]−1

X′
(

y−β
(d)
0 In

)
+ σ2(d)

γ2(d)

[
X′X+ σ2(d)

γ2(d)
Ip

]−1

Zb(d)

ΣΣΣ
(d) = σ2(d)

[
X′X+ σ2(d)

γ2(d)
Ip

]−1

(6)

and

p
(

z jk = 1|βββ ;θθθ
(d)
)

∝ π
(d)
k exp

−
(

β j−b(d)k

)2

2γ2(d)

 . (7)

Now suppose we have sampled
{(

βββ
(1,d),Z(1,d)

)
, . . . ,

(
βββ
(Md ,d),Z(Md ,d)

)}
from p

(
βββ ,Z|y,X;θθθ

(d)
)

and verifying the condition (4); the approximated E-step can then be written as follows:

Q
(

θθθ |θθθ (d)
)
= E

[
log p(y,βββ ,Z|X;θθθ

(d))|y,X;θθθ
(d)
]
≈ 1

Md

Md

∑
m=1

log p(y,βββ (m,d),Z(m,d)|X;θθθ
(d)).

(8)
The computational time and the convergence of the algorithm is governed by the choice of Md .
In Wei and Tanner (1990), the authors suggested using small values for Md (around 20) when
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starting the algorithm and increases this value along with the number of iterations. In this paper
however Md was set to a constant large value.

3.1.3. Maximization step

The M-step consists of maximizing Q
(

θθθ |θθθ (d)
)

with respect to θθθ . We get the following update
equations:

π
(d+1)
k =

1
Md p

Md

∑
m=1

p

∑
j=1

z(m,d)
jk , (9)

b(d+1)
k =

1

Md pπ
(d+1)
k

Md

∑
m=1

p

∑
j=1

z(m,d)
jk β

(m,d)
j , (10)

γ
2(d+1)

=
1

Md p

Md

∑
m=1

p

∑
j=1

g

∑
k=1

z(m,d)
jk

(
β
(m,d)
j −b(d+1)

k

)2
, (11)

β
(d+1)
0 =

1
n

n

∑
i=1

[
yi−

p

∑
j=1

(
1

Md

Md

∑
m=1

β
(m,d)
j

)
xi j

]
, (12)

σ
2(d+1)

=
1

nMd

Md

∑
m=1

n

∑
i=1

(
yi−β

(d+1)
0 −

p

∑
j=1

β
(m,d)
j xi j

)2

. (13)

3.2. Prediction and Clustering

If Xv denotes a new design matrix for which we want to predict the response yv, then we can
define the predicted response ŷ as

ŷ = XvE
[
βββ |y,X; θ̂θθ

]
, (14)

where θ̂θθ is the maximum likelihood estimate of θθθ . The clustering of the covariates is achieved
using the probability of each β j to be drawn from the same component of the mixture, given the
data and the estimated parameters. Therefore the j-th covariate is assigned to the k-th cluster if

∀l = 1, . . . ,g, E
[
z jk|y,X; θ̂θθ

]
≥ E

[
z jl|y,X; θ̂θθ

]
.
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3.3. Model selection

Model (3) depends on a tuning parameter g, which is the assumed number of groups of covariates.
In few situations, this number can be chosen a priori, however in a more general setting a strategy
should be proposed to make this choice. The BIC is proposed as a means to select g. This criterion
was preferred to other criteria based on estimates of the out-of-sample prediction error like cross-
validation (CV) because of its low computational cost. In model (3) the number of parameters
equals 2(g+1). The BIC has therefore the following expression:

BIC =−2log p(y|X; θ̂θθ)+2(g+1) log(n). (15)

As the calculation of the likelihood is still intractable, we can derive from Equation (5), an
approximation of the BIC criterion using Monte Carlo simulations.

4. Numerical experiments

In this section, we compare our approach CLERE with standard dimension reduction approaches
in terms of prediction error. The methods selected for comparison are the variable selection using
LARS algorithm (Efron et al., 2004), the ridge regression (Hoerl and Kennard, 1970), the elastic
net (Zou and Hastie, 2005), the LASSO (Tibshirani, 1994), PACS (Sharma et al., 2013), the
method of Park and colleagues (Park et al., 2007) (subsequently denoted AVG) and the spike
and slab model (Ishwaran and J., 2005) (subsequently denoted SS). The first four methods are
implemented in freely available R packages lars and glmnet (for ridge, LASSO and elastic net).
Those packages were used with default options. For PACS a R script was released on Bondell’s
webpage 1. This R script was however running very slowly. We therefore decided to reimplement
it in C++. This led to a 30-fold speed-up in the computational time. Similarly to Bondell’s script,
our program uses two parameters named lambda and betawt. In Sharma et al. (2013), the authors
suggest assigning betawt with the coefficients obtained from a ridge regression model after the
tuning parameter was selected using AIC. In this simulation study we used the same strategy;
however the ridge parameter was selected via 5-fold cross validation. 5-fold CV was preferred
to AIC since selecting the ridge parameter using AIC always led to estimated coefficients equal
to zero. Once betawt was selected, lambda was chosen via 5-fold cross validation among the
following values: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other
default parameters of their script were unchanged. For the AVG method, we followed the algorithm
described in Park et al. (2007) and implemented it in R. We used the R package spikeslab to
run the spike and slab models. Especially, we used the function spikeslab from that package
to detect influential variables. The number of iterations used to run the function spikeslab
was 2000 (1000 discarded). When running CLERE, the number of EM iterations as well as the
number Md of Monte Carlo samples was set to 1000. The number of groups for CLERE was
chosen between 1 and 9. In all experiments, CLERE was initialized using the estimated univariate
regression coefficients as explained in Section 3.1.1. Our C++ implementations of PACS and
CLERE are available on request.

1 http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r
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4.1. Simulated data

4.1.1. Description

The simulated data are presented under three scenarios. For each scenario, 100 training data sets
were simulated from the standard linear regression model (1). All training data sets consist of
n = 50 simulated individuals with p = 100 variables. In each scenario, a validation set consisting
of 5000 individuals was used to calculate the scaled mean squared prediction error.

If (yt ,Xt) and (yv,Xv) are respectively the training and validation data sets, then the scaled
mean squared prediction error MSE is calculated as:

MSE =
‖yv− ŷ(Xv,yt ,Xt)‖2

‖yv‖2
, (16)

where ŷ(Xv,yt ,Xt) is the predicted response and ‖.‖2 stands for the L2 norm. For CLERE,
predictions are obtained using Equation (14). Each of the methods selected for comparison
provides a fitted value β̂ββ for βββ . A predicted response under the design Xv is then calculated as
Xvβ̂ββ . In all simulations, design matrices Xt and Xv were simulated as independently normally
distributed:

xi ∼N (0,R) , (17)

where R =
(
r j j′
)

is a p× p matrix defined by r j j′ = 0.5| j− j′|. In all scenarios, parameters β0 and
σ2 equal respectively 0 and 100.

The three scenarios are presented below.
1. In scenario 1, the vector βββ of regression coefficients is given by:

βββ = (0, . . . ,0︸ ︷︷ ︸
36

,1, . . . ,1︸ ︷︷ ︸
28

,3, . . . ,3︸ ︷︷ ︸
20

,7, . . . ,7︸ ︷︷ ︸
12

,15, . . . ,15︸ ︷︷ ︸
4

)′.

2. In scenario 2, the vector βββ of regression coefficients is given by:

βββ = (0, . . . ,0︸ ︷︷ ︸
36

,4, . . . ,4︸ ︷︷ ︸
28

,24, . . . ,24︸ ︷︷ ︸
20

,124, . . . ,124︸ ︷︷ ︸
12

,624, . . . ,624︸ ︷︷ ︸
4

)′.

3. In scenario 3, the regression coefficients are chosen uniformally between -10 and +10 :

∀ j, β j =−10+( j−1)× 20
99

.

Scenarios 1 and 2 were chosen to favor variable selection approaches. In those scenarios indeed
36 out of 100 covariates do not influence the response. Moreover the number of effective variables
decreases with their effect size. Scenario 3 was proposed to illustrate the relative predictive
performances of CLERE under the assumption that almost all covariates contribute to the response.
We also considered three additional scenarios directly deriving from the previous ones. Those
scenarios are further denoted as alternative scenario 1, 2 and 3. The alternative scenario s
(s ∈ {1,2,3}) is obtained by randomly permuting the regression coefficients in scenario s. These
additional scenarios were proposed to explore the performances of our methodology when
correlated variables do not necesarily have equal or similar regression coefficients.
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FIGURE 1. Co-distribution of the MSE and the maximum log-likelihood reached for all the initialization strategies. No
significant difference is noticeable in the maximum likelihood reached (F-value = 0.189 - P-value = 0.944) nor in the
prediction error (F-value = 0.57 - P = 0.684).

4.1.2. Impact of the initialization strategy

We consider in this subsection four initialization schemes based on four initial guesses for
the unobserved regression coefficients. In addition to univariate regression, LASSO and ridge
regression already mentioned in Section 3.1.1, we also added the elastic net as one possible means
to generate initial estimates for the β j’s. We compared the distribution of the maximum likelihood
reached and the distribution of prediction error (MSE) for the four initialization strategies using
100 data sets simulated according to scenario 1. As a reference, we also considered the case where
the initial guesses were actually the true regression coefficients used to generate the data. Figure 1
illustrates the results of that comparison. No significant difference was noticeable between the four
initialization strategies. Indeed, none of them seemed to systematically lead to lower or higher
likelihood. This is supported by the very large p-value (P = 0.944) obtained after performing
a Fisher’s test to test for a potential difference between the four strategies. We can therefore
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argue that initialization is not a critical issue for our method. Similar results have already been
observed for stochastic versions of the EM algorithm in Celeux et al. (1996) from which our
implementation partially derives. We also compared the distribution of the MSE for each of the
initialization strategies. No difference in terms of MSE was noticeable (P = 0.684).

4.1.3. Results

Table 1 summarizes the MSE calculated under each scenario. Using this measure, CLERE has
the best average rank over all scenarios considered. We also considered a measure of model
complexity being either the number of unique non-zero parameters or simply the number of
parameters for CLERE. Using the latter measure, the present simulation study illustrates that
CLERE selects the simplest model in all the scenarios considered.

In scenario 1 and 2, clusters of covariates were simulated. These clusters correspond to
covariates having equal regression coefficients. The predictive performances of all the methods
were influenced by the separation between the clusters. Indeed, all methods increased their
performances along with the clusters separation. This improvement was however much more
noticeable for CLERE which outperformed its competitors in scenario 2.

The predictive performances of the methods were also influenced by the correlations between
the covariates. This is illustrated by comparing each scenario with its alternative counterpart.
CLERE robustly showed good performances in all alternative scenarios. Especially, it yields the
best predictive performance in alternative scenarios 1 and 2. In Scenario 3, the regression coeffi-
cients were not separated at all. However, CLERE managed to yield competitive performances
both under the initial and the alternative scenarios.

We also report for CLERE the distribution over 100 simulated data sets of the estimated bk’s.
This is shown in Figure 2 under scenarios 1, 2 and their alternative counterparts. Estimates of the
bk’s are known up to a permutation. It was therefore not straightforward to compare estimates
from a data set to another. To achieve a global comparison of the estimates across all simulated
data sets, we selected, for each data set, the permutation that minimized the bias.

4.2. Real data

4.2.1. Description

We used in this section the real data set mice from the spls R package. This data set consists of
n = 60 mice for which the expression of 83 gene transcripts from liver tissues was measured and
p = 145 microsatellite markers were genotyped. For more details about this data set please refer
to Chun and Keles (2009). One challenging issue of modern Genetics is to bridge gene expression
levels with variations in the genomic sequence. Microsatellite markers are such variations. The
latter markers are discrete quantitative variables taking values in {1,2,3}, while gene expression
levels are real quantitative variables. Instead of considering each transcript as a response, we
performed a principal component analysis (PCA) over the gene expression data to come up with
a reduced number of outcomes. This PCA did not involve the microsatellite markers. The PCA
was performed using the function dudi.pca implemented in the R package ade4. The first five
principal components (PC) accounted for more than 92% of the total inertia. We then proposed
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TABLE 1. Averaged MSE for simulated data under the three scenarios. The average number of non-zero parameters
estimated for each method was also reported. When not specified, the number of groups g is chosen using BIC
criterion. For each scenario in the table we highlighted in bold font the lowest prediction error (equivalent to best
MSE rank) or the lower number of parameters.

Without permutation With permutation

100× Averaged number 100× Averaged number

averaged MSE of parameters MSE Rank averaged MSE of parameters MSE Rank

(Std. Err) (Std. Dev) (Std. Err) (Std. Dev)

Scenario 1
LARS 51.1 ( 1.7 ) 49 ( 0 ) 9 74.1 ( 2.7 ) 49 ( 0 ) 8

LASSO 15.9 ( 0.4 ) 42.4 ( 4.8 ) 5 32.1 ( 0.88 ) 42.8 ( 7.3 ) 4

Ridge 59.7 ( 0.48 ) 100 ( 0 ) 7 61.6 ( 0.55 ) 100 ( 0 ) 6

Elastic net 14.3 ( 0.33 ) 48.8 ( 7.1 ) 3 29 ( 0.66 ) 52.3 ( 9.2 ) 3

CLERE (g = 5) 15.2 ( 0.48 ) 12 ( 0 ) 4 25.3 ( 0.86 ) 12 ( 0 ) 1
CLERE 16.7 ( 0.51 ) 9.16 ( 4.8 ) 6 25.9 ( 0.78 ) 8.52 ( 4.8 ) 2

AVG 8.4 ( 0.33 ) 31.5 ( 6.5 ) 1 36.1 ( 1.4 ) 38.2 ( 8.7 ) 5

PACS 10.4 ( 0.28 ) 35.5 ( 8.7 ) 2 74.3 ( 2.2 ) 34.1 ( 15 ) 9

SS 70.8 ( 0.7 ) 87.5 ( 5.7 ) 8 73.8 ( 0.62 ) 89 ( 5.5 ) 7

Scenario 2
LARS 8.86 ( 0.68 ) 49 ( 0 ) 7 10.9 ( 0.56 ) 49 ( 0 ) 6

LASSO 1.15 ( 0.05 ) 33.3 ( 3 ) 5 3.82 ( 0.2 ) 40.5 ( 3 ) 3

Ridge 66.4 ( 0.4 ) 100 ( 0 ) 8 68.6 ( 0.44 ) 100 ( 0 ) 8

Elastic net 1.23 ( 0.058 ) 33.8 ( 3.1 ) 6 4.14 ( 0.22 ) 40.9 ( 3 ) 5

CLERE (g = 5) 0.023 ( 0.005 ) 12 ( 0 ) 2 0.26 ( 0.09 ) 12 ( 0 ) 2

CLERE 0.014 ( 0.003 ) 15.4 ( 3 ) 1 0.14 ( 0.07 ) 14.4 ( 2.9 ) 1
AVG 0.62 ( 0.057 ) 28 ( 5.4 ) 3 4.02 ( 0.19 ) 40.4 ( 2.9 ) 4

PACS 0.817 ( 0.075 ) 44.2 ( 8.6 ) 4 43.3 ( 2.9 ) 41.2 ( 8.5 ) 7

SS 98.1 ( 0.42 ) 85.4 ( 8.1 ) 9 98.9 ( 0.05 ) 85.4 ( 6.8 ) 9

Scenario 3
LARS 74.8 ( 1.9 ) 49 ( 0 ) 8 139 ( 3.2 ) 49 ( 0 ) 9

LASSO 35.5 ( 0.75 ) 46 ( 6.5 ) 5 76.4 ( 1.2 ) 32.7 ( 14 ) 6

Ridge 53 ( 0.62 ) 100 ( 0 ) 6 73.8 ( 0.62 ) 100 ( 0 ) 4

Elastic net 24.3 ( 0.6 ) 65 ( 7.7 ) 4 61.2 ( 1.2 ) 53.8 ( 14 ) 1
CLERE (g = 5) 19.4 ( 0.86 ) 12 ( 0 ) 2 64.3 ( 2 ) 12 ( 0 ) 2

CLERE 23.8 ( 1.1 ) 9.7 ( 6.1 ) 3 64.7 ( 2.2 ) 8.8 ( 5.9 ) 3

AVG 8.38 ( 0.54 ) 33.2 ( 5.9 ) 1 76.1 ( 1.6 ) 35.6 ( 9.5 ) 5

PACS 70.5 ( 1.8 ) 28 ( 17 ) 7 94.2 ( 1.6 ) 29.7 ( 18 ) 8

SS 81.6 ( 0.47 ) 89.9 ( 3.7 ) 9 86.4 ( 0.45 ) 83 ( 9.5 ) 7
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FIGURE 2. Distributions of the maximum likelihood estimates for parameter b over 100 simulated data sets under
scenarios 1 and 2.

a linear regression model for each of those selected PCs using the microsatellites markers as
covariates. The selected PCs are subsequently denoted PC1, . . . ,PC5. Since no proper validation
data sets were available, all methods were compared in terms of out-of-sample prediction error
estimated via 5-fold cross-validation (CV).

4.2.2. Overall results

Table 2 summarizes the MSE for each selected PC and each method. Similarly to numerical
experiments on simulated data, variable selection using the LARS algorithm yielded very large
prediction error for each PC. All other methods had however comparable prediction error. Using
the averaged rank as an indicator of overall performance, CLERE was the second best method.
The first place was shared by ridge regression, PACS and the Spike and Slab method. CLERE
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TABLE 2. Out-of-sample prediction error estimated using 5-fold CV for each method and each PC for mice data from
Chun and Keles (2009). The averaged number of fitted parameters, as a measure of model complexity, is also reported.
For each scenario in the table we highlighted in bold font the lowest prediction error (equivalent to best MSE rank) or
the lower number of parameters.

Averaged 5-fold CV statistic Averaged number of parameters MSE Rank
(Std. Err) (Std. Dev.)

PC1 LARS 293.57 ( 125.43 ) 47 ( 0 ) 8
LASSO 1.26 ( 0.15 ) 6.8 ( 10.55 ) 4
Ridge 1.07 ( 0.04 ) 145 ( 0 ) 3
Elastic net 2.13 ( 0.81 ) 18.6 ( 21.3 ) 7
CLERE 1.31 ( 0.1 ) 4 ( 0 ) 6
AVG 1.29 ( 0.05 ) 11.4 ( 9.24 ) 5
PACS 1.03 ( 0.01 ) 0.2 ( 0.45 ) 1
SS 1.04 ( 0.01 ) 0.2 ( 0.45 ) 2

PC2 LARS 31.72 ( 10.76 ) 47 ( 0 ) 8
LASSO 0.95 ( 0.04 ) 10.2 ( 4.71 ) 1
Ridge 0.98 ( 0.08 ) 145 ( 0 ) 2
Elastic net 1.14 ( 0.13 ) 43.2 ( 28.14 ) 5
CLERE 1.17 ( 0.2 ) 4 ( 0 ) 6
AVG 1.28 ( 0.14 ) 21.8 ( 3.11 ) 7
PACS 1.03 ( 0.05 ) 5.2 ( 3.27 ) 4
SS 0.99 ( 0.03 ) 1 ( 1.22 ) 3

PC3 LARS 18.74 ( 3.67 ) 47 ( 0 ) 8
LASSO 1.66 ( 0.69 ) 22.4 ( 16.61 ) 6
Ridge 0.96 ( 0.14 ) 145 ( 0 ) 1
Elastic net 1.68 ( 0.68 ) 29.6 ( 26.49 ) 7
CLERE 1.06 ( 0.2 ) 4 ( 0 ) 3
AVG 1.61 ( 0.71 ) 21.6 ( 15.19 ) 5
PACS 1.17 ( 0.11 ) 4.8 ( 5.07 ) 4
SS 1.04 ( 0.14 ) 3 ( 2.24 ) 2

PC4 LARS 30.97 ( 6.97 ) 47 ( 0 ) 8
LASSO 1.29 ( 0.11 ) 3.8 ( 4.32 ) 5
Ridge 1.16 ( 0.03 ) 145 ( 0 ) 4
Elastic net 1.38 ( 0.1 ) 12.2 ( 12.76 ) 7
CLERE 1.09 ( 0.03 ) 4 ( 0 ) 1
AVG 1.35 ( 0.1 ) 7.2 ( 4.66 ) 6
PACS 1.13 ( 0.05 ) 1.6 ( 1.82 ) 3
SS 1.11 ( 0.04 ) 0.6 ( 0.89 ) 2

PC5 LARS 17.26 ( 8.03 ) 47 ( 0 ) 8
LASSO 1.07 ( 0.04 ) 0 ( 0 ) 3
Ridge 1.07 ( 0.04 ) 145 ( 0 ) 3
Elastic net 1.52 ( 0.49 ) 10 ( 21.81 ) 7
CLERE 1.05 ( 0.002 ) 4 ( 0 ) 1
AVG 1.16 ( 0.07 ) 4.4 ( 4.1 ) 6
PACS 1.07 ( 0.04 ) 1.2 ( 0.45 ) 3
SS 1.09 ( 0.05 ) 0 ( 0 ) 5
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FIGURE 3. Selection procedure for the number of groups. Here g = 3 was selected as it minimizes the BIC. The BIC is
approximated using Monte Carlo simulations.

showed the best predictive performances for PC4 and PC5 (no other method was best twice) and
was among the most parsimonious methods with the Spike and Slab method and PACS.

4.2.3. Focus on PC1

We have illustrated above that CLERE is a competitive method for prediction. In this sub-section
we now present how CLERE can be used for interpretation purpose. A focus is therefore laid
on PC1 as a single response variable. The data were no longer partitioned as previously did for
cross-validation.

TABLE 3. Maximum likelihood estimate obtained for CLERE when fitting mice data using PC1 as response variable.

β̂0 b̂1 b̂2 b̂3 π̂1 π̂2 π̂3 γ̂2 σ̂2

2.32×10−2 7.87×10−2 −9.32×10−1 7.63×10−2 0.870 0.076 0.054 3.0×10−6 7.35

Using the whole data set, 3 groups were chosen using the BIC criterion (see Figure 3).

The estimated parameters are given in Table 3. Two groups with moderated positive effects and
one group with strong negative effect were identified.
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TABLE 4. Microsatellite markers assigned to the cluster associated with parameter b2. Regression coefficients for
those variables are reported for all compared methods. For CLERE regression coefficients are obtained using
E
[
β |y,X; θ̂

]
. "." means 0.

Markers Chromosome Lars LASSO Ridge Elastic net CLERE AVG PACS SS

D1Mit87 1 . . -0.0265 . -0.9318 -0.0717 . .

D3Mit19 3 -0.2347 -0.8962 -0.1940 -0.5670 -0.9316 -0.4253 . -0.1219

D4Mit149 4 . . -0.0855 . -0.9316 -0.0717 . -0.2788

D4Mit237 4 -2.7478 -0.8661 -0.1714 -0.4767 -0.9318 -0.0717 . .

D7Mit56 7 -0.2011 -0.0484 -0.1026 -0.1516 -0.9318 . . .

D7Mit76 7 . -0.0116 -0.1026 -0.1514 -0.9317 . . .

D8Mit42 8 0.0119 . -0.0430 . -0.9319 . . .

D9Mit15 9 -3.1530 -1.6102 -0.2826 -1.0474 -0.9318 -0.4253 . -0.1887

D13Mit16 13 1.2867 . 0.0530 0.0823 -0.9318 -0.0034 . .

D15Mit174 15 -1.7012 -0.9335 -0.1149 -0.4312 -0.9319 -0.4253 . -0.0253

D19Mit34 19 . . -0.0449 -0.0303 -0.9317 . . .

In Section 3.2, we presented how to make predictions with CLERE using the vector E
[
βββ |y,X; θ̂θθ

]
.

The latter vector of expectations can be interpreted as a vector of regression coefficients. Conse-
quently, the small estimated value for parameter γ2 (γ̂2 = 3.0×10−6) leads those expectations to
be strongly concentrated around the b̂k’s. CLERE yielded thus a very parsimonious regression
model.

The second group, associated with b̂2 =−0.931, was of interest since it gathers the 11 variables
showing the strongest impact on the response according to CLERE. In Table 4, we compared for
those variables the regression coefficients obtained with LARS, LASSO, ridge regression, elastic
net, AVG, PACS and SS.

The five methods yielded sign and size consistent regression coefficients for almost all the
markers highlighted in Table 4. One exception was however noticed for D13Mit16. In addition,
CLERE showed that some variables discarded by other methods may still be of interest. Overall
this analysis emphasized the ability of CLERE to consistently identify influential covariates using
a very parsimonious model. Moreover, this analysis identifies the clusters of markers that may be
relevantly investigated for a biological characterization.

5. Discussion

We proposed in this paper a new method for simultaneous variable clustering and regression.
Our approach showed good predictive performances both on simulated and real data compared
to its competitors (see Section 4). These good performances were accompanied by a lower
complexity in terms of number of fitted parameters. CLERE also brought improvements in terms
of interpretability since each fit provides a clustering of the covariates. This work comes in
the aftermath of a series of recently published approaches aiming at reducing the dimension in
linear regression models by collapsing the covariates into groups. Contrary to those previous
works, our approach is not based on penalized least squares problem. However we assumed
the existence of a latent structure within the variables that depends only on their unobserved
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regression coefficients. In such framework, no distributional assumption regarding the covariates
is necessary for achieving the clustering. The latent structure is modeled using a Gaussian mixture
model whose parameters are estimated via an EM like algorithm. A stochastic version, namely the
MCEM, of the latter algorithm was proposed since the E-step was intractable. Even though MCEM
has become a standard in many applications, it is noteworthy that its computational cost is not
negligible. Indeed, running the estimation with 3 groups on the data set presented in Section 4.2.3
took 30 seconds for CLERE but less than 1 second for the other approaches. Although CLERE
seemed to be relatively slow, the estimation time remained manageable. Improvements in speeding
up the estimation through parallel computing is a natural perspective of this work, especially since
we are aiming at tackling ultra-high dimensional regression problems in forthcoming research. We
proposed in this paper the BIC criterion for choosing the number of latent groups. This criterion
was preferred over different existing criteria such as the out-of-sample prediction error because of
its small computational cost. Other information-based criteria will be explored in further works.

Variable selection is an appealing extension to our model. In fact, if a constraint is imposed on
the parameter space, then CLERE can also be used as a variable selection tool. Such constraint
may lead for instance to assume one group k to have its mean bk and its associated variance equal
to zero. This would be a new model which however may be easily derived from the approach
presented here. Many applications deal with response variable that may not be continuous. Another
promising extension of our model is therefore towards generalized linear models.

6. Appendix

6.1. Conditional

In Section 3.1.2, a Gibbs sampling strategy is proposed to approximate the E-step of our EM like
algorithm based on the conditional distribution p(βββ |Z,y,X;θθθ) and p(Z|βββ ,y,X;θθθ). We present
in this section how we obtained these distributions. Let C denotes the complete log-likehood:

C =−n
2

log
(
2πσ

2)− 1
2σ2

n

∑
i=1

(
yi−

p

∑
j=1

β jxi j

)2

+
p

∑
j=1

g

∑
k=1

z jk

(
−1

2
log
(
2πγ

2)− (β j−bk)
2

2γ2 + logπk

)
(18)

C =−n
2

log
(
2πσ
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2

log
(
2πγ

2)− 1
2σ2

(
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′X′y+βββ
′X′Xβββ

)
− 1

2γ2

(
βββ
′
βββ −2βββ

′Zb+b′Z′Zb
)

+
p

∑
j=1

g

∑
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z jk logπk
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[
βββ
′
(

X′X+
σ2

γ2 I
)

βββ −2βββ
′
(

X′y+
σ2

γ2 Zb
)]

,

where K(Z,σ2,γ2,πππ) is defined as

K(Z,σ2,γ2,πππ) =−n
2

log
(
2πσ

2)− p
2

log
(
2πγ

2)− 1
2σ2 y′y+

p

∑
j=1

g

∑
k=1

z jk logπk.

Let ΣΣΣ and µµµ respectively be defined as

ΣΣΣ = σ
2
(

X′X+
σ2

γ2 I
)−1
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and

µµµ =
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X′X+
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.
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H(Z,σ2,γ2,πππ,b) =−n
2

log
(
2πσ

2)− p
2

log
(
γ

2)− 1
2σ2 y′y+

p

∑
j=1

g

∑
k=1

z jk logπk +
1
2

µµµ
′
ΣΣΣ
−1

µµµ +
1
2

log(|ΣΣΣ|) .

(19)
We can identify from Equation (19) the density function of a multidimensional normal distribution
of parameters µµµ and ΣΣΣ. Therefore since p(βββ |Z,y,X;θθθ) ∝ p(βββ ,Z,y|X;θθθ) we can derive Equation
(6).

6.2. Conditional distribution

If we assume that for all j ∈ {1, . . . , p}, (z j1, . . . ,z j,g) |βββ ,y,X;θθθ follows a multinomial distribu-
tion, then its associated probabilities can be deduced from Equation (18). Equation (7) derives
therefore straightforwardly.
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