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dependence of extremes

Titre: Quantifier et modéliser les dépendances multivariée et spatiale des extrêmes
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Abstract: Within both multivariate extreme models and spatial processes, it is important to precisely identify de-

pendencies among extremes. In particular detecting asymptotic independence is fundamental and in a multivariate

setting, many authors have proposed measures of extreme dependence/independence with sometimes associated

tests. Dependence structures within spatial processes are more complex and very few authors have considered other

structures than the max-stable one. In this survey paper some major contributions to inference and modelling for

extremal dependencies are presented in multivariate and spatial contexts, including the presentation of recent spatial

models allowing asymptotic independence.

Résumé : Lorsque l’on s’intéresse aux extrêmes multivariés ou spatiaux, il est important d’identifier au mieux la

nature des dépendances entre réalisations extrêmes. La notion d’indépendance asymptotique des extrêmes est à ce titre

primordiale. Dans un cadre multivarié, différentes mesures quantifiant la dépendance extrêmale ont été proposées et

des tests d’indépendance asymptotique mis en oeuvre. Pour le cadre spatial, la modélisation classique s’appuie sur

les processus max-stables mais les structures de dépendance présentes peuvent être plus complexes que celles gérées

par ce type de processus. Dans cet article, les principaux résultats sur l’inférence et la modélisation de la dépendance

entre réalisations extrêmes sont présentés et l’accent est mis sur les modèles récents permettant une prise en compte de

l’indépendance asymptotique.
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1. Introduction

In the last decades there have been significant advances in the available modelling procedures for

univariate extreme values (see Gardes and Girard (2013) for details). Nervertheless, in practice,

problems are often multivariate in character and more general questions can be addressed with

multivariate models such as probability of at least one town being flooded in a hydrological

example, for instance. Moreover, in many practical situations, it is more helpful to model the

process of extreme levels as a continuous rather than a discrete process. It is particularly true when

dealing with environmental extremes and max-stable processes introduced by de Haan (1984)

allow a generalization of the multivariate extremes dependence structure to the infinite dimensional

case. Within both multivariate extreme models and spatial processes, extremal dependencies play

1 Institut de Mathématiques et de Modélisation de Montpellier. UMR CNRS 5149. Université Montpellier 2, Place

Eugène Bataillon, 34090 Montpellier, France.

E-mail: jean-noel.bacro@univ-montp2.fr and E-mail: gwladys.toulemonde@univ-montp2.fr

Journal de la Société Française de Statistique, Vol. 154 No. 2 139-155

http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238

mailto:jean-noel.bacro@univ-montp2.fr
mailto:gwladys.toulemonde@univ-montp2.fr


140 Bacro, J-N. and Toulemonde, G.

a fundamental role and tools for summarizing and exploring such dependencies are essential.

The paper is organized as follows. Sections 2 and 3 deal with multivariate extremal dependence.

Multivariate extreme value distributions are briefly introduced in Section 2, focusing on the

bivariate case. Section 3 is devoted to summary measures for extremal dependence, including both

notions of asymptotic dependence and asymptotic independence. The statistical estimation of the

considered measures is discussed and the section ends with a review of recent statistical tests for

asymptotic independence. Spatial processes are considered in Section 4. Max-stable processes,

inverse max-stable processes and a mixture of both are successively considered. These three

classes of processes correspond to models with asymptotic dependence within the max-stable

dependence structures, asymptotic independence and asymptotic dependence apart from the

max-stable dependence structures, respectively. A conclusion is given in Section 5.

2. Multivariate extreme value distributions

Let (Xi)1≤i≤n be a sequence of n independent and identically distributed (iid) d-dimensional

random vectors from a given distribution function. Multivariate extreme value theory relies on the

study of the limiting behavior of the componentwise maxima (max1≤i≤n Xi,1, . . . ,max1≤i≤n Xi,d).
As in the univariate case, the classes of Multivariate Extreme Value Distributions (MEVDs)

and max-stable distributions actually coincide. Unfortunately, unlike the univariate case, the

class of MEVDs does not admit any finite parametric representation. From max-stability, G

is a MEVD if and only if (iff) for every positive integer n, there exist vectors bn > 0 and an

such that Gn(an +bnx) = G(x), x ∈ Rd . As a consequence, G
1
n is a distribution function (df)

for every positive integer n, that is G is max-infinitely divisible (Balkema and Resnick (1977))

which insures that there exists a measure µ on [−∞,∞) such that G(x) = exp(−µ[−∞,x]c).
The measure µ , named the exponent measure, is unique if G is defined such that G(x) = 0 for

x 6∈]q1,∞]× . . .×]qd ,∞] where q j = inf{x ∈ R : G j(x)> 0}. From this property, MEVDs share

a specific structure which can be used to characterization results. As showed in de Haan and

Resnick (1977), there exist mainly two ways for characterizing a MEVD. In the sequel, Theorem

1 focuses on a particular one and, for sake of simplicity, corresponding results are expounded only

in the bivariate case. The second one, based on a non-homogeneous Poisson process, will not be

detailed in this review. More detailed probability and statistical accounts on MEVDs can be found

in the following reference books: Resnick (1987); Beirlant et al. (2004); de Haan and Ferreira

(2006).

Let (Xi,Yi)i=1,...,n be iid random vectors from a df F and denote by Mn the vector of compo-

nentwise maxima Mn = (Mx,n,My,n) = (max1≤i≤n Xi,max1≤i≤nYi).
If there exist two vector sequences of reals an = (an,1,an,2)

t > 0 and bn = (bn,1,bn,2)
t such that

P(Mn ≤ an x+bn) = Fn(an x+bn)−→G(x) as n → ∞

with x = (x1,x2)
t ∈ R2 and G a non degenerate distribution, then G is a bivariate extreme value

distribution and we say that F belongs to the domain of attraction of G denoted by F ∈ D(G).
The df G is characterized both by its two margins and its dependence structure. From univariate

extreme value theory, margins are Generalized Extreme Value (GEV) distributed. There is no

loss of generality in assuming a particular GEV distribution (Resnick (1987)) and a common

choice is to consider the unit Fréchet distribution Ψ(y) = exp(−y−1), y > 0. Such a choice allows
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Measuring and modelling multivariate and spatial dependence of extremes 141

to isolate dependence aspects from marginal distributions. The normalising sequences are then

usually taken as a1,n = a2,n = n, b1,n = b2,n = 0.

A possible characterization of the limiting joint distribution of componentwise maxima is

presented in the following theorem (Coles (2001)).

Theorem 1. Let (Xi,Yi)i=1,...,n be iid random vectors from a df F having its marginal distributions

in the domain of attraction of a unit Fréchet distribution. If

P(Mx,n/n ≤ x1,My,n/n ≤ x2)−→G(x1,x2) as n → ∞

where G is a non degenerate distribution, then G is of the form :

G(x1,x2) = exp(−V (x1,x2)) , x1 > 0,x2 > 0

with

V (x1,x2) =
∫ 1

0
max

(
ω

x1

,
1−ω

x2

)
dH(ω)

and H is a non-negative measure on [0,1] satisfying the two following constraints:

∫ 1

0
ωdH(ω) =

∫ 1

0
(1−ω)dH(ω) = 1.

The function V is related to the aforementioned exponent mesure µ defined on [0,∞)\{0}. In

particular, V is a homogeneous function of order -1 that means V (kx1, kx2) =
1
k
V (x1,x2). Using

this property it is easy to check the max-stability property of G:

Gk(kx1,kx2) = exp(−kV (kx1,kx2)) = exp(−V (x1,x2)) = G(x1,x2) .

Remark 1. If H is a measure which places mass 1 on ω = 0 and on ω = 1, then G(x1,x2) =
exp(−x−1

1 )exp(−x−1
2 ), x1 > 0, x2 > 0 corresponding to the independent case. If H is a measure

which places mass 2 on ω = 0.5, G(x1,x2) = exp(−max(x−1
1 ,x−1

2 )), x1 > 0, x2 > 0, corresponding

to the perfect dependence, i.e. X=Y a.s..

Remark 2. As already stated, the theorem puts forward that finite parametric forms for G are

unavailable. Nevertheless, in practice, it can be helpful to consider wide parametric families

defining classes of bivariate extreme value distribution (e.g. the logistic, asymetric logistic,

bilogistic families, see Coles (2001)).

Remark 3. In the bivariate case, another well-known representation for G has been proposed

by Pickands (1981): G is a bivariate extreme value law with Fréchet margins iff there exists a

function A(·) such that

G(x,y) = exp

(
−
(

1

x
+

1

y

)
A

(
x

x+ y

))

where A(·) is a convex function from [0,1] to [1/2,1] satisfying min(t,1− t)≤ A(t)≤ 1 for all

t ∈ [0,1], A(0) = A(1) = 1, −1 ≤ A′(0)≤ 0, 0 ≤ A′(1)≤ 1 and A′′(t)≥ 0. If A(x) = max(x,1−x)
(respectively A(x) = 1), then X and Y are perfectly dependent (resp. X and Y are independent).
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The A(·) function is often called the Pickands dependence function and is related to the measure

H through the relation

A(u) =
∫ 1

0
max(u(1−ω),(1−u)ω)dH(ω).

Remark 4. For a d-dimensional multivariate extreme value distribution G, the theorem states

that there exists a finite measure H on the unit-simplex S = {x ∈ [0,∞]d\0 :|| x ||= 1} satisfying
∫

S w jdH(w) = 1 for all j = 1, . . . ,d such that G(x) = exp

(
−
∫

S
max

1≤ j≤d

w j

x j
dH(w)

)
.

3. Multivariate extreme dependence

From a theoretical point of view, the dependence structure of a d-dimensional extreme value

distribution is completely characterized through the measure H. Nevertheless, H has a complex

structure which cannot be easily inferred from data and simpler dependence measures are needed.

Let (X ,Y )∼ F ∈ D(G) with unit Fréchet margins. When G is equal to a product of its marginal

unit Fréchet laws, that is when F is in the domain of attraction of independence, X and Y are said to

be asymptotically independent. In other cases, X and Y are said to be asymptotically dependent. As

an example, Sibuya (1960) showed that jointly normal variables which are not perfectly correlated

are asymptotically independent. Clearly, independence implies asymptotic independence but

the converse is false. Asymptotic independence is a rather complicated notion which has little

to do with the amount of independence of the component of the original vector. As explained

below, all max-stable distributions correspond either to an asymptotic dependence structure or an

exact independence one. In other words, for max-stable models, the only achievable asymptotic

independence structure is the usual independence notion. As emphased by Coles et al. (1999),

detecting asymptotic independence is fundamental. In particular, fitting asymptotic dependent

models to asymptotically independent data leads to an over- or under-estimation of probabilities of

extreme joint events, since there is a mis-placed assumption that the most extreme marginal events

may occur simultaneously (Coles et al. (1999)). In the sequel, some usual extremal dependance

measures are detailed in a bivariate extreme context.

3.1. Measures of extreme dependence/independence

3.1.1. The upper tail dependence parameter χ and the χ̄ parameter

In the bivariate case, Joe (1993) has introduced the upper tail dependence (UTD) parameter of a

vector (X ,Y ) with distribution F and same marginal distribution FX as limx→xFX
P(X > x | Y > x),

where xFX
= sup{x | FX(x) < 1}. If F ∈ D(G), then the UTD parameters associated to the

distributions F and G coincide (Joe (1997)). Following Coles et al. (1999), we denote the UTD

parameter χ ∈ [0,1]. The χ parameter allows to discriminate between asymptotic independence

(AI) and asymptotic dependence (AD) since AI (respectively AD) is achieved iff χ = 0 (resp.

χ > 0) (Sibuya (1960)).

To work on extremal dependencies, Coles et al. (1999) introduce an equivalent formulation

for χ which provides a possible diagnostic check for AD. To be as general as possible, the χ
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parameter is expressed through (U,V ) with [0,1]-uniform marginals. Since we have,

P(V > u |U > u) = 2− 1−P(U ≤ u,V ≤ u)

1−u
∼ 2− logP(U ≤ u,V ≤ u)

log(u)
,

we deduce that

χ = lim
u→1

2− logP(U ≤ u,V ≤ u)

logP(U ≤ u)
≡ lim

u→1
χ(u). (1)

Consequently the function χ(u) can be interpreted as a quantile-dependent measure of depen-

dence. More specifically, the sign of χ(u) indicates if variables are positively associated (that is

probability of joint excesses is larger than under independence) or negatively associated at the

quantile level u with 2− log(2u−1)/ log(u)≤ χ(u)≤ 1 where the lower bound is interpreted as

−∞ for u ≤ 1
2
, and 0 for u = 1. If G is a bivariate extreme value distribution, the function χ(u) is

constant and it is easy to show that χ(u) = 2−V (1,1), leading to χ = 2−V (1,1), where V (·, ·)
is defined in Theorem 1. Other particular cases are exact dependence and independence which

respectively correspond to χ(u) = 1 and χ(u) = 0 ∀u ∈ (0,1].
Nevertheless, in more general cases, the χ(u) function appears as a non-trivial function. For

example, for a Gaussian vector with correlation coefficient ρ , Coles et al. (1999) exhibit that χ(u)
appears as linear from intermediate values of u whatever the ρ value is but with a diminished

effect of the dependence as u → 1: χ(u) → 0 for all ρ < 1. For ρ > 0, the convergence to 0

is very slow and appears as ultimately abrupt. That is, even though in presence of asymptotic

independence, the χ(u) function could be interpreted as constant and positive. For asymptotically

independent vectors, both χ parameter and χ(u) function appear of limited interest: the null value

of χ does not provide any information on the strength of the dependence and the χ(u) function

can be erroneously interpreted. For these reasons, Coles et al. (1999) proposed a new measure

of dependence, named χ̄ , which is relevant in the case of asymptotic independence. Using an

analogy with the χ construction, they proposed to consider the parameter χ̄ defined as follows:

χ̄ = lim
u→1

χ̄(u)≡ lim
u→1

2log(1−u)

logP(U > u,V > u)
−1.

We have −1 < χ̄(u) ≤ 1, ∀u ∈ [0,1], and χ̄(u) increases in absolute value with the depen-

dence. If χ̄(u) ∈]0,1[, extremes are positively associated whereas if χ̄(u) ∈]−1,0[, extremes are

negatively associated.

The χ̄ parameter allows also to discriminate between AI and AD since AD (respectively AI) is

achieved iff χ̄ = 1 (resp. χ̄ < 1). Moreover it characterizes the case of asymptotic independence.

For instance, in the Gaussian case, the parameter χ̄ is equal to ρ and gives an information on the

strength of the dependence even if we are in the case of asymptotic independence (ρ < 1). Finally,

it is easy to show that χ̄ is equal to one for all bivariate max-stable distributions, apart from the

independence one G(x,y) = exp(−1
x
)exp(−1

y
). In other words, the only asymptotic independence

structure for max-stable distribution is the classical independence one.

3.1.2. The extremal coefficient θ and the coefficient of tail dependence η

Let (X ,Y ) be distributed according to a bivariate distribution F with common marginals FX ,

F ∈ D(G), and consider θF(x) =
logP(X≤x,Y≤x)

logP(X≤x) . This parameter, introduced by Buishand (1984),
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is linked to the UTD parameter since χ = 2− limx→xFX
θF(x) and verifies F(x,x) = FX(x)

θF (x).

The extremal index θ for a bivariate extreme value distribution G is defined as the limit of θG(x)
when x → xGX

. With the usual Fréchet margins, we then have G(x,x) = exp
(
−θ

x

)
, x > 0. It is

straightforward to deduce that χ = 2−θ and θ ∈ [1,2]. Note that we also have θ = 2A
(

1
2

)
where

A(·) is the Pickands dependence function introduced hereabove. The θ value summarizes the

dependence of the margins and quantifies his strength: θ = 2 corresponds to the independent

case whereas 1 ≤ θ < 2 corresponds to asymptotic dependence; if θ = 1, X and Y are perfectly

dependent. Note that the extremal coefficient definition can easily be extended to the multivariate

case (d−dimension) with θ ∈ [1,d]. Properties attached to extremal coefficients are detailed in

Schlather and Tawn (2002, 2003).

The extremal coefficient θ is of particular interest when dealing with asymptotic dependence

but is useless in the case of AI. To resolve it, Ledford and Tawn (1996, 1997) introduced a new

coefficient η called coefficient of tail dependence. Motivated by the expression of the joint survival

function of unit Fréchet variables with bivariate normal dependence, they introduced the tail

model

P(X > x,Y > x) = x
− 1

η L (x) (2)

as x → ∞ where 0 < η ≤ 1 and L (·) is a slowly varying function. The strength of the dependence

is determinated through η and L (·). The η parameter determines the decay rate of 1−F(x,x)≡
F̄(x,x) for large x and characterizes the nature of the tail dependence. Four classes of dependence

have been put forward (see Ledford and Tawn (1997) for details): asymptotic dependence, η = 1

and L (x) 6→ 0; negative association 0<η < 1
2
; positive association 1

2
<η < 1; near independence

η = 1
2
,L (x)≥ 1 (exact independence corresponds to L (x)≡ 1) . The last three cases correspond

to asymptotic independence since η < 1: in such cases, the η value hence measures the degree of

dependence in the asymptotic independence. Note that Heffernan (2000) proposed evaluations of

η for a large class of distributions.

Under the tail model assumption (2), Coles et al. (1999) showed that the χ̄ and η parameters are

linked through the relation χ̄ = 2η −1.

3.1.3. Dependence parameters estimation

Empirical estimations of χ(u) and χ̄(u) can always be deduced from empirical estimations of the

bivariate survival distribution function. Coles et al. (1999) suggested to build confidence intervals

assuming independence of the observations. Nevertheless they also argued that care has to be

taken not to draw strong conclusions from these intervals but only consider these intervals as an

informal picture of the extremal dependence, especially for u near 0 or 1.

Parametric inference for χ and χ̄ can be deduced using the Ledford and Tawn tail model (2): for

(X ,Y ) with Fréchet margins and T = min(X ,Y ), the tail model leads to P(T > x)∼ x
− 1

η L (x) as

x → ∞ and η appears as the shape parameter of T . Standard univariate techniques such as the Hill

estimator can then be applied to estimation of η or equivalently of χ̄ (see e.g. Ledford and Tawn

(1996); Peng (1999); Draisma et al. (2004) for details). A practical example for such inference

procedures can be found for instance in Poon et al. (2003).

Smith (1990) was the first to propose an estimator for θ , using the fact that 1/max(X ,Y ) is

exponentially distributed with mean 1
θ for (X ,Y ) with Fréchet marginal distributions. As already
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Measuring and modelling multivariate and spatial dependence of extremes 145

stated, θ = 2A(1
2
) and non parametric estimators for the Pickands dependence function A(·)

(Capéraà et al. (1997)) can also be used to estimate θ . Other estimators for θ have been proposed

in a spatial context when considering pairs of sites separated by a distance h. Such estimators,

also usable for non spatial bivariate vectors, are presented in Section 4.1.

3.2. Existing tests for asymptotic independence

There exists an important literature on testing the bivariate asymptotic independence (see de Car-

valho and Ramos (2012) for a recent review). Our aim here is neither to give an exhaustive review

nor to compare all the existing tests but to put forwards some useful approaches. A possible way

to discriminate the raft of results is to distinguish between approaches related to a sample from

the bivariate extreme value distribution (Tawn (1988); Ledford and Tawn (1996); Deheuvels and

Martynov (1996); Ramos and Ledford (2005); Falk and Michel (2006); Bacro et al. (2010) and the

references therein) and approaches which can be used on distributions in a domain of attraction

(Zhang (2008); Hüsler and Deyuan (2009); Zhang et al. (2011)).

Let G a bivariate extreme value distribution (BEVD) with marginal distributions G1 and G2. In

the sequel we focus on some asymptotic independence tests which are distribution free or based

on joint tail modelling.

3.2.1. Dependence function based test (Hüsler and Deyuan (2009))

Let (X ,Y ) be a bivariate random vector with df F = (F1,F2) and assume that F ∈ D(G), with

Gi(t) = exp
(
−(1+ γix)

−1/γi
)
, γi ∈ R, i = 1,2. From extreme value theory (see e.g. de Haan and

Ferreira (2006)), G can be characterized through the so-called dependence function ℓ(·, ·) defined

as ℓ(x,y) = − logG
(

x−γ1−1
γ1

, y−γ2−1
γ2

)
on [0,∞]2\(∞,∞). The dependence function is such that

ℓ(x,y) = limt→0 t−1P(1−F1(X)≤ tx or 1−F2(Y )≤ ty) and satisfies min(x,y)≤ ℓ(x,y)≤ x+ y,

x,y > 0. If ℓ(x,y) = x + y, for all x,y > 0, (X ,Y ) are asymptotically independent (see Beir-

lant et al. (2004)). Using this property, de Haan and de Ronde (1998) first proposed a graphi-

cal test for asymptotic independence. Hüsler and Deyuan (2009) develop two approaches to

test the null hypothesis H0 : ℓ(x,y) = x + y. Both tests are based on the statistic ℓn(x,y) =
m
nk ∑

n
i=1 1l{Xi≥X̃m,m+1−[kx] or Yi≥Ỹm,m+1−[ky]} where the sample (X1,Y1), . . . ,(Xn+m,Yn+m) has been divided

in two sub-samples (Xi,Yi), i = 1, . . . ,n and (X̃i,Ỹi) = (Xn+i,Yn+i), i = 1, . . . ,m, with m ≡ m(n)
such that m/n → c > 0 as n → ∞ and m/n− c = o(n−1/2). Here, as usual, k ≡ k(n) designates

an intermediate sequence such that k(n)→ ∞ as n → ∞ and k = o(n). Studying the weak conver-

gence of the process
√

k (ℓn(x,y)− (x+ y)), (x,y) ∈ [0,1]2 under H0, Hüsler and Deyuan (2009)

construct two tests which are similar to Cramer-von Mises and Kolmogorov-Smirnov tests re-

spectively. In practice, if the sample size m+n is even (resp. odd), possible choices for m and n

are m = n = n+m
2

(resp. m−1 = n = n+m+1
2

) and several values for k are usually considered, for

example 1 ≤ k ≤ n0.8, in order to appreciate how the k value could affect the results.

3.2.2. Conditional distribution of sum based test (Falk and Michel (2006))

Originally set up for bivariate distributions with reverse exponential margins, the test proposed by

Falk and Michel (2006) can be adapted to GEV margins. More specifically, assume unit Fréchet
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margins and consider ε > 0 and t ∈ [0,1]. When ε tends to 0, Falk and Michel (2006) show

that the conditional distribution function Kε(t)≡ P(X−1 +Y−1 < εt | X−1 +Y−1 < ε) tends to

t2 if (X ,Y ) are asymptotically independent, and t otherwise. This result is then used to test the

asymptotic independence using classical goodness-of-fit tests such as the Kolmogorov-Smirnov

or the likelihood ratio as well as the chi-square test. Note that Frick et al. (2007) have proposed a

generalization of the Falk and Michel’s work, based on a second order differential expansion of

the spectral decomposition of G. They focused on the case of a null hypothesis of tail dependence

against a composite alternative representing the various degrees of tail independence.

3.2.3. Madogram based test (Bacro et al. (2010))

Let (X ,Y ) be a random vector from G and consider the random variable W = 1
2
| G1(X)−G2(Y ) |.

Because G1(X) and G2(Y ) are uniformly distributed on [0,1), their dependence relationships

specify the distribution of W . If X = Y a.s., then the distribution of W is a Dirac distribution at 0.

If X and Y are independent, then W admits the probability df fW (z) = 4−8z on [0, 1
2
). Of course

many intermediary situations are possible between perfect dependence and exact independence. In

other words, the distribution of W provides information about the asymptotic dependence between

X and Y . The mean and variance of W are respectively related to the extremal coefficient θ of

(X ,Y ) by the formula E(W ) = 1
2

θ−1
θ+1

and σ2
W = 1

6
− 1

4

(
θ−1
θ+1

)2 − 1
2

∫ 1
0

dt[
1+A(t)

]2 where A(·) is the

classical Pickands dependence function. E(W ) is a strictly monotonic increasing function of θ

with E(W ) = 1
6

if and only if θ = 2. Accordingly, the asymptotic independence of X and Y can be

checked by testing the null hypothesis H0 : E(W ) = 1
6

against H1 : E(W )< 1
6
. Under H0, it can

be shown that
√

n
Ê(W )− 1

6

σ̂W

D→ N (0,1) as n → ∞. As the expectation E(W ) can be related to the

well-known madogram function used in spatial statistics, this test is referred to as the madogram

test.

3.2.4. Tail quotient correlation based test (Zhang (2008))

Let (Xi,Yi)1≤i≤n be a sequence of iid replications of a bivariate random vector (X ,Y ) with unit

Fréchet margins and consider the tail quotient correlation introduced by Zhang (2008):

qu,n =
max1≤i≤n{(u+Wi)/(u+Vi)}+max1≤i≤n{(u+Vi)/(u+Wi)}−2

max1≤i≤n{(u+Wi)/(u+Vi)}max1≤i≤n{(u+Vi)/(u+Wi)}−1

where u is a positive threshold, Wi and Vi are exceedance values over u of Xi and Yi respectively.

Zhang (2008) proved that if X and Y are asymptotically independent, then qu,n → 0 a.s. as n → ∞.

In other words, a near zero value of qu,n would suggest a very weak tail dependence. Under

the null hypothesis of asymptotic independence, Zhang (2008) establishes that nqu,n
d→ Γ(2,1−

exp(−1/u)), with Γ(·, ·) the usual Gamma distribution. This result can be used to determine

whether there is or not a tail dependence between X and Y . Note that as discussed in Zhang (2008),

the truncation below the threshold value u of data does not make a rejection of the null hypothesis

more likely.
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3.2.5. Joint tail censored likelihood based tests (Ramos and Ledford (2009))

Let (X ,Y ) be a random vector with unit Fréchet margins. In a series of papers, Ledford and

Tawn (1996, 1997) investigated the tail dependence of (X ,Y ) through a joint tail dependence

model which can be summarized as P(X > x,Y > y) = L (x,y)
xc1 yc2

, c1 + c2 = 1/η , where η is the

aforementioned coefficient of tail dependence and L (·, ·) is a bivariate slowly varying function

with limit function g(·, ·) (Bingham et al. (1987)), that is

lim
t→∞

L (tx, ty)

L (t, t)
= g(x,y), and g(cx,cy) = g(x,y) for all c > 0, x > 0,y > 0.

The function g is constant along any ray y = ax for a > 0 and a ray dependence function g∗
defined as g(x,y) = g∗(x/(x+ y)) = g∗(w) for w = x/(x+ y) ∈ (0,1) is introduced: g∗ is termed

ray dependent if g∗(w) varies with w and ray independent if g∗(w) is constant over differents rays.

Recently, Ramos and Ledford (2009) considered a simplified version where c1 = c2, leading to

the following model

P(X > x,Y > y) =
L (x,y)

(xy)1/2η
. (3)

Such a model holds for a wide range of dependence models, spanning both asymptotic dependence

and asymptotic independence (see Heffernan (2000)). Let u denote a high threshold. Ramos and

Ledford main result is the following: if

lim
u→∞

P(X > us,Y > ut | X > u,Y > u) =
g∗(s/(s+ t))

(st)1/2η
, (4)

for all (s, t) ∈ [1,∞]× [1,∞] then

η−1g∗(w) =

(
1−w

w

)1/2η ∫ w

0
z1/ηdHη(z)+

(
w

1−w

)1/2η ∫ 1

w
(1− z)1/ηdHη(z) (5)

where Hη is a non-negative measure on [0,1] satisfying the normalization condition

1

η
=

∫ 1/2

0
w1/ηdHη(w)+

∫ 1

1/2
(1−w)1/ηdHη(w). (6)

Now, let (S,T ) be a random vector with survival function F̄ST such that F̄ST can arise as a

limit for a bivariate random vector (X ,Y ) with unit Fréchet margins (see Ramos and Ledford

(2009) for details): F̄ST (s, t) = P(S > s,T > t) = limu→∞
P(X>us,Y>ut)
P(X>u,Y>u) . The following joint tail

model can then be introduced: for a sufficiently large u, P(X > x,Y > y) can be approximated by

P(X > u,Y > u)F̄ST (
x
u
, y

u
), (x,y) ∈ (0,∞)2, where from (4) and (5)

F̄ST (s, t) = η

∫ 1

0

{
min

(
w

s
,
1−w

t

)}1/η

dHη(w).

Assuming a parametric model for Hη , likelihood based tests can be used for testing asymptotic

dependence against asymptotic independence under the assumption that the joint tail model
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holds exactly when (x,y)> (u,u). Using the well-known threshold censored likelihood (Smith

et al. (1997)), a (censored) likelihood Ln(η ,λ ,γ) can be build from n iid vectors (Xi,Yi), where

γ denotes a vector of parameters related to the considered model and λ = P(X > u,Y > u).
Asymptotic dependence corresponds to η = 1, a boundary point of the parameter space which is

non-regular with respect to the usual regularity conditions. Let Ln(η̂ , λ̂ , γ̂) denote the maximum of

the likelihood taken over all {η ,λ ,γ} and Ln(1, λ̃ , γ̃) the maximal likelihood under the constraint

η = 1. Then, under the null hypothesis η = 1, −2log
(

Ln(1, λ̃ , γ̃)/Ln(η̂ , λ̂ , γ̂)
)

converges in

distribution to V 2, where V is a non-negative random variable with distribution function P(V ≤
x) = Φ(x)1lx≥0 for Φ the standard normal distribution function (Ramos and Ledford (2009)).

4. Dependence for spatial processes

4.1. Max-stable processes

In the last decade, there have been much interest in the statistical modelling of spatial extremes.

One common way to deal with extreme value analysis in spatial statistics is by using max-stable

processes which naturally extend multivariate extremes to spatial data (see e.g. Smith (1990);

Coles (1993); Coles and Tawn (1996); Schlather (2002); de Haan and Pereira (2006); Cooley et al.

(2006); Buishand et al. (2008); Kabluchko et al. (2009); Padoan et al. (2010); Lantuéjoul et al.

(2011); Davison et al. (2012); Davison and Gholamrezaee (2012); Huser and Davison (2012) and

the references therein). Max-stable processes are presented in Ribatet (2013) and below we will

just remind the definition and an usually used spectral representation.

Definition 1. Let D be an index space and consider a stochastic process {Z(s),s ∈ D} defined

on D . If there exist functions an(·)> 0 and bn(·) on R such that

max
1≤i≤n

Zi(·)−bn(·)
an(·)

d→ Z(·) as n → ∞

with Z1,Z2, . . . designate independent copies of Z, then {Z(s),s ∈ D} is a max-stable process.

A spectral representation for max-stable processes is the following (de Haan (1984); Schlather

(2002)):

Proposition 1. Assume that {ri}i≥1 are points of a Poisson process on (0,∞) with intensity dr.

Let D be an index space and consider {Wi(s),s ∈ D}, i ≥ 1, be iid copies of a real valued

random function on D , independent of the {ri} and such that E{W+(s)} = µ ∈ (0,∞), where

W+(s) = max(W (s),0). Then Z(s) = µ−1 maxi≥1W+
i (s)/ri is a max-stable process with unit

Fréchet margins on D.

The Gaussian extreme value process (Smith (1990)), the extremal Gaussian process (Schlather

(2002)) and the Brown-Resnick process (Kabluchko et al. (2009)) can be obtained by choosing

particular expressions for Wi(·).
Characterising spatial dependence for an underlying max-stable processes is of fundamental

interest for applications. For stationary processes, Schlather and Tawn (2003) introduced an

extremal coefficient function θ(·) to extend the extremal coefficient notion to spatial context. This

function focuses on the extremal pairwise dependence: θ(h) measures the extremal dependence
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of a pair of locations separated by a distance h. For a stationary spatial process, as emphasized by

Schlather and Tawn (2003), the extremal coefficient function θ(·) conveys sufficient information

to characterize the amount of extremal dependence between pairs of variables separated by

h. For a stationary max-stable process Z(·) with unit Fréchet marginal F , we have P(Z(s) ≤
z,Z(s+h)≤ z) = exp(−θ(h)

z
). For estimation of the extremal coefficient function, Schlather and

Tawn (2003) proposed a maximum (censored) likelihood based estimator while Cooley et al.

(2006) introduced geostatistic tools to completely characterize the extremal coefficient function.

Using the so-called madogram function ν(h) = E|Z(s+h)−Z(s)|, they defined the F-madogram

as νF(h) = E|F(Z(s+h))−F(Z(s))| and showed that

θ(h) =
1+2νF(h)

1−2νF(h)
.

If Z(·) is assumed to be isotropic, it is then straightforward to derive from n independent replica-

tions of Z(·) an estimator for θ(h) using ν̂F(h) =
1
n ∑

n
k=1

1
2K(h) ∑(s,s′)∈K(h) |F̂(Z(s+h))− F̂(Z(s))|

where K(h) denotes the number of pairs (s,s′) separated by the distance h. A generalization

of this approach has been proposed by Bel et al. (2008) who compared in a large simulation

study four θ(·)- estimators, including the non-parametric one θ̂ = 2Â(1
2
) where Â(·) is the non-

parametric estimator (Capéraà et al. (1997)) of the Pickands dependence function. Estimation

of the F-madogram when the marginal distribution is unknown has been discussed by Naveau

et al. (2009) who also further define the λ -madogram function by considering Fλ and F1−λ ,

0 < λ < 1, into the F-madogram expression. This function is related to the Pickands dependence

function and extends the notion of the madogram to completely describe the bivariate dependence

structure.

As already stated, max-stable distributions model asymptotic dependence or exact independence.

As a consequence, restrictive assumptions are imposed when using max-stable processes to model

dependence for spatial extremes: a max-stable dependence structure is assumed and the only

available asymptotic independence is the classical independence one. Moreover, the limiting

model fitted at observable levels is assumed to be the true one for more extreme events than those

which have been observed. As a consequence, situations where the extremal dependence structure

varies with distance apart from max-stable dependence structure are rejected. Alternative models

to max-stable ones are presented in the following subsection.

4.2. Asymptotically independent spatial processes

In a spatial context, Wadsworth and Tawn (2012) have proposed a flexible class of models adapted

to the case of asymptotic independence. They construct this class by noting that an inverse

max-stable process in the sense of the following proposition is asymptotically independent.

Proposition 2. (Wadsworth and Tawn (2012)) Let {ri}, {W+
i (s)}, i ≥ 1, Z(·) be as defined in

Proposition 1. Then the process

Y (s) = µ min
i≥1

ri

W+
i (s)

=
1

Z(s)

with P(W+(s) =W+(s+h)> 0) = 0, for all ||h||> 0 is an asymptotically independent process

(AIP) on D with exponential margins.
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In the same way that the extremal coefficient function θ(h) is defined as a summary of

extremal dependence for a pair of locations separated by a distance h for max-stable processes, a

coefficient of tail dependence function η(h) based on the η coefficient for the AIPs can be defined

(Ancona-Navarrete and Tawn (2002)).

For an inverse max-stable process Y (·), Wadsworth and Tawn (2012) noticed that the coefficient

of tail dependence function η(h) is equal to 1/θ(h) with θ(h) the extremal coefficient function

associated to the max-stable process Z(·).
As an illustration we present in Figure 1 two simulations of AIP processes. The first one on

the left is constructed by inversing a Smith model with covariance parameters σ11 = σ22 = 2 and

σ12 = 0.75. The second one is obtained by inversing a Schlather model with the powered exponen-

tial correlation function (sill=1, range=1 and smooth=1.5). The corresponding functions η(h) are

also represented. Keeping in mind that the case η = 1/2 corresponds to the near-independance

case (Ledford and Tawn (1997)), the AIP constructed from a Smith process allows asymptotic

independence but tends to near-independence for long distance. This is not true for an AIP

constructed from a Schlather process which presents a stronger dependence in the independence

when h is sufficiently large.
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FIGURE 1. On the left : simulation of an AIP constructed by inversing a Smith model. The central panel presents a

simulation of an AIP constructed by inversing a Schlather model. On the right: associated functions η(h).

Inference for max-stable processes is possible using likelihood based on the pairwise densities.

Padoan et al. (2010) have applied composite likelihood inference method (Lindsay (1988); Varin

(2008)) to spatial extremes. Wadsworth and Tawn (2012) implemented the same technique for the

inversed max-stable processes. To this aim, they need the bivariate distribution which is easy to

compute with Fréchet margins and which obviously depends on the bivariate distribution of the

corresponding max-stable process Z(·).
The composite likelihood information criterion named CLIC (Varin and Paolo (2005)) is helpful

for the model selection when we deal with composite likelihood. The lower the CLIC, the better

the fit. It is equal to −2[Lp(β̂ ,x)− tr(J (β̂ )H (β̂ )−1] with Lp the pairwise log-likelihood, β̂ the

pairwise maximum likelihood estimate of β , J(β̂ ) the estimated variance matrix of the score

vector and H(β̂ ) the hessian matrix of Lp.

To summarize, AIPs present an alternative to max-stable processes for data which present

dependence at observed levels but independence in the limit. Obviously the problem we have in

the bivariate case persists in the spatial one. It is not an easy task to decide in which case we are.
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Have we to use a dependent or independent process ? Generally we observe dependence and it is

difficult to know whether this dependence will persist in the limit or not.

It is essential to have theoretical results and practical tools which are adapted to both AD and

AI cases.

In a recent paper, Guillou et al. (2013) adapt the madogram to the context of asymptotic

independence. Their approach is based on results proposed by Ramos and Ledford (2011). Ramos

and Ledford (2011) extend the classical and limited componentwise maxima result given in

Theorem 1 by proposing an analogue that holds for both AD and AI cases. Under the same setup

as subsection 3.2.5, we consider a sequence of iid random vectors (Xi,Yi), i = 1, . . . ,n, distributed

with the same distribution than (X ,Y ). Then defining M.,n,εbn
as the componentwise maxima

if we only consider vectors (Xi,Yi) such that Xi and Yi are greater than εbn with bn such that

nP(X > bn,Y > bn) = 1, Ramos and Ledford (2011) obtained that

Gη(x,y)≡ lim
ε→0

lim
n→∞

P

(
MX ,n,εbn

bn

≤ x,
MY,n,εbn

bn

≤ y

)
= exp(−Vη(x,y))

where

Vη(x,y) = η

∫ 1

0

(
max

(
ω

x
,
1−ω

y

))1/η

dHη(ω).

The margins are Fréchet distributed with shape parameter η and different scale parameters

σX =Vη(1,∞) and σY =Vη(∞,1).
Guillou et al. (2013) defined the F-madogram νη for a bivariate vector following the df

Gη(x,y) and proposed an analogue of the classical extremal coefficient by defining θη =
1+2νη

1−2νη

with θη =Vη(σ
η
X ,σ

η
Y ). By this way they generalized the F-madogram by allowing the pairwise

maxima to belong to a wider family. Moreover they also proposed estimators of these quantities

and applied them on simulated and real data. This approach is promising and should be also useful

in a spatial context.

Coming back to spatial processes, Wadsworth and Tawn (2012) proposed also an hybrid spatial

dependence model with the aim to allow a mixture of AI and AD to be present. This hybrid model

is discussed in the next subsection.

4.3. Mixing max-stable and asymptotically independent models

Wadsworth and Tawn (2012) proposed to consider an hybrid spatial process H(·). Let Z(·) and

Z1(·) denote two max-stable processes and Y (·) = 1/Z1(·) an AIP each with Fréchet margins. The

hybrid spatial process is defined as H(s) = max{aZ(s), (1−a)Y (s)} with a ∈ [0,1].
Figure 2 presents simulation results for this process H(·). In these simulations we have sup-

posed that the max-stable processes Z(·) and Z1(·) belong to the same family with the same

parameters used in Figure 1. The first column corresponds to the case a = 0.2, the second one to

a = 0.5 and the last one to a = 0.8.

To exemplify the dependence structure of this spatial process, it is possible to compute

P(H(x)> z,H(x+h)> z) =
a(2−θ(h))

z
+

(1−a)1/η(h)

z1/η(h)
+O(z−2) (z →+∞)
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FIGURE 2. Simulations of the process H(·) for a ∈ {0.2,0.5,0.8}. Smith process (resp. Schlather process) is involved

in the first (resp. second line). Associated θ(·) functions are presented in the third line.
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with θ(h) the extremal dependence function associated to Z(·) and η(h) the coefficient of tail

dependence function associated to Y (·). Based on this result, we can compute the parameter χH

associated to the process H(·) for a distance h and we obtain χH(h) = a χZ(h).
Obviously, this model includes the max-stable process (when a = 1) and the AIP one (when

a = 0). In the case a ∈ (0,1) the model is neither max-stable nor AI. Figure 2 illustrates how the

spatial extremal dependencies vary regarding to the value of a. This new model extends traditional

dependence modelling within the asymptotically dependent class and is convenient when AD is

present at all distances because it allows to capture a second order in the dependence structure

which is not possible with a max-stable model.

Concerning inference issues, since it is easy to compute the bivariate distribution associated

to this hybrid process, estimation of the unknown parameters using the likelihood based on the

pairwise densities is possible and the CLIC is used for model selection purposes.

5. Conclusion

This paper focused on extremal dependence in multivariate and spatial models, especially on

asymptotic independence. Recent results on statistical inference and statistical modelling in

relation to the asymptotic independence setting have been put forward.

For multivariate models, there exists a huge literature on such topics and other existing approaches

based on point processes, spectral measures or conditional distributions given that at least one

component is large (Heffernan and Tawn (2004)) for instance could also be considered. The study

of spatial extreme processes is more recent and major efforts have been concentrated on developing

models and methods taking into account the more complex structures of spatial phenomena.

Innovative and original developments are needed to better tackle practical problems such as

environmental or climatic ones. In particular, measuring and modelling extremal dependencies for

spatio-temporal processes clearly appear as a new challenge for future research.
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